A381584 Starts of runs of 4 consecutive integers that are all terms in A381581.
1, 55, 2104, 5222, 24784, 63510, 64264, 69487, 95463, 121393, 184327, 327303, 374589, 463110, 468168, 561069, 572550, 596868, 671407, 740310, 759030, 819948, 902670, 956680, 1023009, 1036230, 1065030, 1259817, 1274910, 1359552, 1683154, 1714470, 1731750, 2182023
Offset: 1
Examples
1 is a term since A291711(1) = 1 divides 1, A291711(2) = 2 divides 2, A291711(3) = 1 divides 3, and A291711(4) = 2 divides 4. 55 is a term since A291711(55) = 1 divides 55, A291711(56) = 2 divides 56, A291711(57) = 3 divides 57, and A291711(58) = 2 divides 58.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
f[n_] := f[n] = Fibonacci[2*n]; q[n_] := q[n] = Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[m > f[k], k++]; If[m < f[k], k--]; If[m >= 2*f[k], s += 2; m -= 2*f[k], s++; m -= f[k]]]; Divisible[n, s]]; seq[count_, nConsec_] := Module[{cn = q /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {q[k]}]; k++]; s]; seq[12, 4]
-
PARI
mx = 20; fvec = vector(mx, i, fibonacci(2*i)); f(n) = if(n <= mx, fvec[n], fibonacci(2*n)); is1(n) = {my(s = 0, m = n, k); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2; m -= 2*f(k), s++; m -= f(k))); !(n % s);} list(lim) = {my(q1 = is1(1), q2 = is1(2), q3 = is1(3), q4); for(k = 4, lim, q4 = is1(k); if(q1 && q2 && q3 && q4, print1(k-3, ", ")); q1 = q2; q2 = q3; q3 = q4);}
Comments