cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381585 Starts of runs of 5 consecutive integers that are all terms in A381581.

Original entry on oeis.org

57744971, 159104411, 203738652, 212548572, 260463851, 361823291, 413644572, 431577521, 440353328, 520800012, 717222337, 726300972, 779825648, 843559091, 913313321, 945016812, 986681527, 1091786528, 1116032201, 1185786431, 1318751081, 1347208812, 1360423692, 1418212627
Offset: 1

Views

Author

Amiram Eldar, Feb 28 2025

Keywords

Comments

Are there 6 consecutive integers that are all terms in A381581?

Examples

			57744971 is a term since A291711(57744971) = 17 divides 57744971, A291711(57744972) = 18 divides 57744972, A291711(57744973) = 13 divides 57744973, A291711(57744974) = 14 divides 57744974, and A291711(57744975) = 15 divides 57744975.
		

Crossrefs

Cf. A291711.
Subsequence of A381581, A381582, A381583 and A381584.
Similar sequences: A330928, A334373, A364220, A364383.

Programs

  • PARI
    mx = 20; fvec = vector(mx, i, fibonacci(2*i)); f(n) = if(n <= mx, fvec[n], fibonacci(2*n));
    is1(n) = {my(s = 0, m = n, k); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2; m -= 2*f(k), s++; m -= f(k))); !(n % s);}
    list(lim) = {my(q1 = is1(1), q2 = is1(2), q3 = is1(3), q4 = is1(4), s5); for(k = 5, lim, q5 = is1(k); if(q1 && q2 && q3 && q4 && q5, print1(k-4, ", ")); q1 = q2; q2 = q3; q3 = q4; q4 = q5);}