This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381604 #9 Mar 12 2025 08:39:26 %S A381604 1,2,5,10,17,116,501,512 %N A381604 Least number k such that A381596(k) = n. %C A381604 Least number k such that the number of real zeros of the polynomial P(k,z) = Sum_{i=1..k} A001223(i)*z^(i-1) is equal to n, where A001223(i) = differences between consecutive primes. %e A381604 a(1) = 2 because P(2,z) = Sum_{i=1..2} A001223(i)*z^(i-1) = 1 + 2*z = 0 for z = -1/2. %e A381604 a(2) = 5 because P(5,z) = Sum_{i=1..5} A001223(i)*z^(i-1) = 1 + 2*z + 2*z^2 + 4*z^3 + 2*z^4 = 0 for z = -1.6499348..., -0.5606729... %p A381604 with(numtheory): %p A381604 for n from 0 to 20 do: %p A381604 ii:=0: %p A381604 for k from 1 to 10^3 while(ii=0) do : %p A381604 P:=add((ithprime(i+1)-ithprime(i))*x^(i-1),i=1..k): %p A381604 y:=fsolve(P,x,real):z:=evalf({%}):y:=nops(z): %p A381604 if y=n %p A381604 then %p A381604 ii:=1:printf (`%d %d \n`,n,k): %p A381604 else %p A381604 fi: %p A381604 od: %p A381604 od: %Y A381604 Cf. A001223, A381596. %K A381604 nonn,hard,more %O A381604 0,2 %A A381604 _Michel Lagneau_, Mar 01 2025