This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381605 #37 Apr 03 2025 14:03:15 %S A381605 1,1,2,2,3,2,2,2,3,3,3,3,3,3,2,2,4,2,3,3,3,2,3,3,3,3,4,2,4,3,3,3,4,3, %T A381605 3,3,4,4,3,3,4,2,4,3,4,3,4,3,4,4,3,3,3,4,3,4,4,2,5,2,4,4,2,4,5,3,3,4, %U A381605 5,2,3,2,4,3,5,3,4,2,3,3,3,4,4,4,4,3,4,4,5,3,3,3,4,4,4,3,4,3,4,2 %N A381605 Number of distinct prime divisors of n^3+1. %H A381605 Robert Israel, <a href="/A381605/b381605.txt">Table of n, a(n) for n = 1..10000</a> %F A381605 a(n) = A001221(A001093(n)). %F A381605 a(n) > 1 for n > 2. - _Charles R Greathouse IV_, Mar 03 2025 %p A381605 f:= proc(n) nops(numtheory:-factorset(n^3+1)) end proc: %p A381605 map(f, [$1..50]); # _Robert Israel_, Apr 03 2025 %t A381605 Table[PrimeNu[n^3 + 1], {n, 1, 30}] %o A381605 (MATLAB) %o A381605 function result = a(n) %o A381605 result = numel(unique(factor(sym(n^3+1)))); %o A381605 end %o A381605 (PARI) a(n) = omega(n^3+1); \\ _Michel Marcus_, Mar 01 2025 %o A381605 (PARI) a(n)=if(n%3==2, omega((n+1)/3^valuation(n+1,3)) + omega((n^2-n+1)/3^valuation(n^2-n+1,3)) + 1, omega(n+1) + omega(n^2-n+1)) \\ _Charles R Greathouse IV_, Mar 03 2025 %Y A381605 Cf. A001093, A001221, A128428, A366580. %K A381605 nonn %O A381605 1,3 %A A381605 _Joost de Winter_, Mar 01 2025