This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381617 #45 Aug 17 2025 20:18:04 %S A381617 1,2,1,1,3,1,4,1,1,2,1,1,5,1,2,1,1,6,1,3,1,1,2,1,7,1,1,8,1,2,1,1,4,1, %T A381617 3,1,2,1,1,1,9,1,2,1,1,10,1,2,1,1,3,1,5,1,1,2,1,11,1,1,4,1,2,1,1,3,1, %U A381617 1,2,1,12,1,1,13,1,2,1,1,3,1,6,1,2,1,1,1,4,1,2,1,1,14 %N A381617 A sequence constructed by greedily sampling the zeta distribution for parameter value 2 to minimize discrepancy. %C A381617 The geometric mean approaches exp(-zeta'(2)/zeta(2)) = A381456 in the limit. %C A381617 The zeta distribution PDF is p(i) = 1/(zeta(2)*i^2). %H A381617 Jwalin Bhatt, <a href="/A381617/b381617.txt">Table of n, a(n) for n = 1..10000</a> %H A381617 Wikipedia, <a href="https://en.wikipedia.org/wiki/Zeta_distribution">Zeta distribution</a> %e A381617 Let p(k) denote the probability of k and c(k) denote the number of occurrences of k among the first n-1 terms; then the expected number of occurrences of k among n random terms is given by n*p(k). %e A381617 We subtract the actual occurrences c(k) from the expected occurrences and pick the one with the highest value. %e A381617 | n | n*p(1) - c(1) | n*p(2) - c(2) | n*p(3) - c(3) | choice | %e A381617 |---|---------------|---------------|---------------|--------| %e A381617 | 1 | 0.607 | - | - | 1 | %e A381617 | 2 | 0.215 | 0.303 | - | 2 | %e A381617 | 3 | 0.823 | -0.544 | 0.202 | 1 | %e A381617 | 4 | 0.431 | -0.392 | 0.270 | 1 | %e A381617 | 5 | 0.039 | -0.240 | 0.337 | 3 | %t A381617 probCountDiff[j_, k_, count_] := k/(Zeta[2] j^2) - Lookup[count, j, 0] %t A381617 samplePDF[n_] := Module[{coeffs, unreachedVal, counts, k, probCountDiffs, mostProbable}, %t A381617 coeffs = ConstantArray[0, n]; unreachedVal = 1; counts = <||>; %t A381617 Do[probCountDiffs = Table[probCountDiff[i, k, counts], {i, 1, unreachedVal}]; %t A381617 mostProbable = First@FirstPosition[probCountDiffs, Max[probCountDiffs]]; %t A381617 If[mostProbable == unreachedVal, unreachedVal++]; coeffs[[k]] = mostProbable; %t A381617 counts[mostProbable] = Lookup[counts, mostProbable, 0] + 1;, {k, 1, n}]; coeffs] %t A381617 A381617 = samplePDF[120] %Y A381617 Cf. A241773, A381522. %K A381617 nonn %O A381617 1,2 %A A381617 _Jwalin Bhatt_, Mar 10 2025