cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381618 Reverse the Chung-Graham representation of n while preserving its trailing zeros: a(n) = A381607(A263273(A381608(n))).

This page as a plain text file.
%I A381618 #8 Mar 03 2025 09:33:24
%S A381618 0,1,2,3,4,7,6,5,8,9,17,11,12,20,19,15,16,10,18,14,13,21,22,43,24,30,
%T A381618 51,45,38,29,25,46,32,33,54,53,41,50,28,49,40,36,42,23,44,27,31,52,48,
%U A381618 39,37,26,47,35,34,55,56,111,58,77,132,113,98,63,64,119,79
%N A381618 Reverse the Chung-Graham representation of n while preserving its trailing zeros: a(n) = A381607(A263273(A381608(n))).
%C A381618 This sequence is a self-inverse permutation of the nonnegative integers.
%H A381618 Rémy Sigrist, <a href="/A381618/b381618.txt">Table of n, a(n) for n = 0..6765</a>
%H A381618 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A381618 a(n) <= A000045(2*k) iff n <= A000045(2*k).
%e A381618 The first terms, alongside their Chung-Graham representation, are:
%e A381618   n   a(n)  A381579(n)  A381579(a(n))
%e A381618   --  ----  ----------  -------------
%e A381618    0     0           0              0
%e A381618    1     1           1              1
%e A381618    2     2           2              2
%e A381618    3     3          10             10
%e A381618    4     4          11             11
%e A381618    5     7          12             21
%e A381618    6     6          20             20
%e A381618    7     5          21             12
%e A381618    8     8         100            100
%e A381618    9     9         101            101
%e A381618   10    17         102            201
%e A381618   11    11         110            110
%e A381618   12    12         111            111
%e A381618   13    20         112            211
%e A381618   14    19         120            210
%e A381618   15    15         121            121
%e A381618   16    16         200            200
%o A381618 (PARI) A381607(n) = { my (t = Vecrev(digits(n, 3))); sum(k = 1, #t, t[k] * fibonacci(2*k)); }
%o A381618 A263273(n) = { my (t = 3^if (n, valuation(n, 3), 0)); t * fromdigits(Vecrev(digits(n / t, 3)), 3) }
%o A381618 A381608(n) = { for (k = 1, oo, my (f = fibonacci(2*k)); if (f >= n, my (v = 0); while (n, while (n >= f, n -= f; v += 3^(k-1);); f = fibonacci(2*k--);); return (v););); }
%o A381618 a(n) = A381607(A263273(A381608(n)))
%Y A381618 See A345201 for a similar sequence.
%Y A381618 Cf. A000045, A263273, A381579, A381607, A381608.
%K A381618 nonn,base
%O A381618 0,3
%A A381618 _Rémy Sigrist_, Mar 02 2025