This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381632 #6 Mar 24 2025 22:35:11 %S A381632 2,9,24,54,72,80,108,125,216,224,400,704,960,1215,1250,1568,1664,2000, %T A381632 2401,2500,2688,2880,4352,4800,5000,5103,6075,7290,7744,8064,8448, %U A381632 8640,8960,9375,9728,10000,10976,14400,14580,18816,19968,21632,23552,24000,24057 %N A381632 Numbers such that (greatest prime exponent) = (sum of distinct prime indices). %C A381632 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %F A381632 A051903(a(n)) = A066328(a(n)). %e A381632 The terms together with their prime indices begin: %e A381632 2: {1} %e A381632 9: {2,2} %e A381632 24: {1,1,1,2} %e A381632 54: {1,2,2,2} %e A381632 72: {1,1,1,2,2} %e A381632 80: {1,1,1,1,3} %e A381632 108: {1,1,2,2,2} %e A381632 125: {3,3,3} %e A381632 216: {1,1,1,2,2,2} %e A381632 224: {1,1,1,1,1,4} %e A381632 400: {1,1,1,1,3,3} %e A381632 704: {1,1,1,1,1,1,5} %e A381632 960: {1,1,1,1,1,1,2,3} %t A381632 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A381632 Select[Range[100],Max@@Last/@FactorInteger[#]==Total[Union[prix[#]]]&] %Y A381632 For (length) instead of (sum of distinct) we have A000961. %Y A381632 Including number of parts gives A062457 (degenerate). %Y A381632 Counting partitions by the LHS gives A091602, rank statistic A051903. %Y A381632 Counting partitions by the RHS gives A116861, rank statistic A066328. %Y A381632 Partitions of this type are counted by A381079. %Y A381632 A001222 counts prime factors, distinct A001221. %Y A381632 A047993 counts partitions with max part = length, ranks A106529. %Y A381632 A051903 gives greatest prime exponent, least A051904. %Y A381632 A055396 gives least prime index, greatest A061395. %Y A381632 A056239 adds up prime indices, row sums of A112798. %Y A381632 A239455 counts Look-and-Say partitions, complement A351293. %Y A381632 A239964 counts partitions with max multiplicity = length, ranks A212166. %Y A381632 A240312 counts partitions with max = max multiplicity, ranks A381542. %Y A381632 A382302 counts partitions with max = max multiplicity = distinct length, ranks A381543. %Y A381632 Cf. A000720, A048767, A130091, A246655, A317090, A380955, A381437, A381439. %K A381632 nonn %O A381632 1,1 %A A381632 _Gus Wiseman_, Mar 24 2025