A381633 Number of ways to partition the prime indices of n into sets with distinct sums.
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1
Keywords
Examples
The A050320(60) = 6 ways to partition {1,1,2,3} into sets are: {{1},{1,2,3}} {{1,2},{1,3}} {{1},{1},{2,3}} {{1},{2},{1,3}} {{1},{3},{1,2}} {{1},{1},{2},{3}} Of these, only the following have distinct block-sums: {{1},{1,2,3}} {{1,2},{1,3}} {{1},{2},{1,3}} So a(60) = 3.
Crossrefs
Programs
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; Table[Length[Select[sfacs[n],UnsameQ@@hwt/@#&]],{n,100}]
Comments