cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381636 Numbers whose prime indices cannot be partitioned into constant blocks with distinct sums.

This page as a plain text file.
%I A381636 #11 Apr 26 2025 23:33:00
%S A381636 12,60,63,84,120,126,132,156,204,228,252,276,300,315,325,348,372,420,
%T A381636 444,492,504,516,560,564,588,630,636,650,660,693,708,720,732,780,804,
%U A381636 819,840,852,876,924,931,948,975,996,1008,1020,1068,1071,1092,1140,1164
%N A381636 Numbers whose prime indices cannot be partitioned into constant blocks with distinct sums.
%C A381636 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A381636 Also numbers that cannot be written as a product of prime powers > 1 with distinct sums of prime indices (A056239).
%C A381636 Contains no squarefree numbers.
%C A381636 Conjecture: These are the zeros of A382876.
%e A381636 The prime indices of 300 are {1,1,2,3,3}, with partitions into constant blocks:
%e A381636   {{2},{1,1},{3,3}}
%e A381636   {{1},{1},{2},{3,3}}
%e A381636   {{2},{3},{3},{1,1}}
%e A381636   {{1},{1},{2},{3},{3}}
%e A381636 but none of these has distinct block-sums, so 300 is in the sequence.
%e A381636 The terms together with their prime indices begin:
%e A381636    12: {1,1,2}
%e A381636    60: {1,1,2,3}
%e A381636    63: {2,2,4}
%e A381636    84: {1,1,2,4}
%e A381636   120: {1,1,1,2,3}
%e A381636   126: {1,2,2,4}
%e A381636   132: {1,1,2,5}
%e A381636   156: {1,1,2,6}
%e A381636   204: {1,1,2,7}
%e A381636   228: {1,1,2,8}
%e A381636   252: {1,1,2,2,4}
%e A381636   276: {1,1,2,9}
%e A381636   300: {1,1,2,3,3}
%t A381636 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
%t A381636 pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
%t A381636 Select[Range[100],Select[pfacs[#],UnsameQ@@hwt/@#&]=={}&]
%Y A381636 More on multiset partitions into constant blocks: A006171, A279784, A295935.
%Y A381636 These are the positions of 0 in A381635, after taking block-sums A381716.
%Y A381636 Partitions of this type are counted by A381717.
%Y A381636 For strict instead of constant blocks we have A381806, zeros of A381633.
%Y A381636 For equal instead of distinct block-sums we have A381871.
%Y A381636 A000688 counts multiset partitions into constant, see A381455 (upper), A381453 (lower).
%Y A381636 A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
%Y A381636 A050361 counts multiset partitions into distinct constant blocks, after sums A381715.
%Y A381636 A055396 gives least prime index, greatest A061395.
%Y A381636 A056239 adds up prime indices, row sums of A112798.
%Y A381636 Cf. A000720, A001222, A005117, A050320, A059404, A213242, A293243, A299202, A300385, A381078, A381454, A381634.
%K A381636 nonn
%O A381636 1,1
%A A381636 _Gus Wiseman_, Mar 10 2025