cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381637 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks with distinct sums.

This page as a plain text file.
%I A381637 #6 Mar 11 2025 08:24:32
%S A381637 1,1,1,1,1,2,1,2,1,2,1,2,1,2,2,2,1,3,1,3,2,2,1,3,1,2,2,3,1,4,1,3,2,2,
%T A381637 2,4,1,2,2,4,1,5,1,3,3,2,1,4,1,3,2,3,1,5,2,5,2,2,1,5,1,2,2,4,2,5,1,3,
%U A381637 2,4,1,5,1,2,3,3,2,5,1,5,2,2,1,6,2,2,2
%N A381637 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks with distinct sums.
%C A381637 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A381637 The prime indices of 84 are {1,1,2,4}, with 7 multiset partitions into blocks with distinct sums:
%e A381637   {{1,1,2,4}}
%e A381637   {{1},{1,2,4}}
%e A381637   {{2},{1,1,4}}
%e A381637   {{1,1},{2,4}}
%e A381637   {{1,2},{1,4}}
%e A381637   {{1},{2},{1,4}}
%e A381637   {{1},{4},{1,2}}
%e A381637 with block-sums: {8}, {1,7}, {2,6}, {2,6}, {3,5}, {1,2,5}, {1,3,4}, of which 6 are distinct, so a(84) = 6.
%t A381637 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A381637 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A381637 mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
%t A381637 Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@Total/@#&]]],{n,100}]
%Y A381637 Allowing any block-sums gives A317141  (lower A300383), before sums A001055.
%Y A381637 Before taking sums we had A321469.
%Y A381637 For distinct blocks instead of distinct block-sums we have A381452.
%Y A381637 If each block is a set we have A381634 (zeros A381806), before sums A381633.
%Y A381637 For equal instead of distinct block-sums we have A381872, before sums A321455.
%Y A381637 Other multiset partitions of prime indices:
%Y A381637 - For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
%Y A381637 - For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
%Y A381637 - For sets of constant multisets (A050361) see A381715.
%Y A381637 - For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
%Y A381637 A003963 gives product of prime indices.
%Y A381637 A055396 gives least prime index, greatest A061395.
%Y A381637 A056239 adds up prime indices, row sums of A112798.
%Y A381637 A265947 counts refinement-ordered pairs of integer partitions.
%Y A381637 Cf. A000720, A001222, A001970, A002846, A045778, A066328, A213385, A299200, A299201, A299202, A300385, A317142.
%K A381637 nonn
%O A381637 1,6
%A A381637 _Gus Wiseman_, Mar 10 2025