cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A381919 Pentagonal numbers which are products of four distinct primes.

Original entry on oeis.org

210, 330, 2262, 3290, 4030, 4510, 4845, 5370, 6902, 7315, 8855, 10542, 13490, 15555, 15862, 16485, 18095, 18426, 19437, 21182, 23002, 24130, 28497, 29330, 30602, 31465, 36426, 44290, 46905, 49595, 50142, 54626, 60501, 67310, 67947, 72490, 77862, 79235, 83426, 84135
Offset: 1

Views

Author

Massimo Kofler, Mar 10 2025

Keywords

Examples

			A000326(12) = 210 = 12*(3*12-1)/2 = 2*3*5*7.
A000326(15) = 330 = 15*(3*15-1)/2 = 2*3*5*11.
A000326(57) = 4845 = 57*(3*57-1)/2 = 3*5*17*19.
		

Crossrefs

Intersection of A000326 and A046386.

Programs

  • Maple
    N:= 10^5: # for terms <= N
    P:= select(isprime,[2,seq(i,i=3..N/30,2)]): R:= {}:
    nP:= nops(P):
    for i1 from 3 to nP do
       p1:= P[i1];
       for i2 from 1 to i1-1 while p1 * P[i2] <= N/6 do
         p1p2:= p1*P[i2];
       for i3 from 1 to i2-1 while p1p2 * P[i3] <= N/2 do
         p1p2p3:= p1p2 * P[i3];
         m:= ListTools:-BinaryPlace(P[1..i3-1],N/p1p2p3);
         V:=select(ispent, P[1..m] *~ p1p2p3);
         if V <> [] then
            R:= R union convert(V,set);
         fi
    od od od:
    sort(convert(R,list)); # Robert Israel, Mar 10 2025
  • Mathematica
    Select[Table[n*(3*n-1)/2, {n, 1, 250}], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1} &] (* Amiram Eldar, Mar 10 2025 *)
Showing 1-1 of 1 results.