This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381651 #18 Aug 07 2025 14:54:13 %S A381651 0,9,6,5,5,1,1,5,9,9,8,9,4,4,3,7,3,4,4,6,5,6,4,5,5,3,1,4,2,8,9,4,2,7, %T A381651 6,4,0,3,2,0,1,0,3,7,2,3,4,3,6,9,1,4,1,5,2,5,2,5,6,3,0,7,8,7,5,2,8,9, %U A381651 2,1,4,5,4,2,5,9,5,8,7,6,1,4,1,7,7,0,1,8,4,0,5,9,2,5,1,7,0,6,5,3,8,7,1,4,6,3 %N A381651 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,1). %H A381651 Artur Jasinski, <a href="/A381651/a381651_1.txt">Complete list of formulas of the positive multiple zeta values up to weight 6</a> %H A381651 <a href="/wiki/Index_to_constants#Start_of_section_M">Index to constants which are multiple zeta values</a> (4,1) %F A381651 zetamult(4,1) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n)) = 2*zeta(5) - zeta(2)*zeta(3) = zetamult(3,1,1). %e A381651 0.0965511599894437344656455314289... %t A381651 RealDigits[2 Zeta[5] - Zeta[2] Zeta[3], 10, 105][[1]] %t A381651 (* slowly convergent *) %t A381651 sum = 0; Monitor[Do[Do[sum = sum + N[1/(m^4 n)], {n, 1, m - 1}, 50], {m, 2, 10000}], m]; Print[sum] %o A381651 (PARI) zetamult([4,1]) %K A381651 nonn,cons %O A381651 0,2 %A A381651 _Artur Jasinski_, Mar 03 2025