cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381651 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,1).

This page as a plain text file.
%I A381651 #18 Aug 07 2025 14:54:13
%S A381651 0,9,6,5,5,1,1,5,9,9,8,9,4,4,3,7,3,4,4,6,5,6,4,5,5,3,1,4,2,8,9,4,2,7,
%T A381651 6,4,0,3,2,0,1,0,3,7,2,3,4,3,6,9,1,4,1,5,2,5,2,5,6,3,0,7,8,7,5,2,8,9,
%U A381651 2,1,4,5,4,2,5,9,5,8,7,6,1,4,1,7,7,0,1,8,4,0,5,9,2,5,1,7,0,6,5,3,8,7,1,4,6,3
%N A381651 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,1).
%H A381651 Artur Jasinski, <a href="/A381651/a381651_1.txt">Complete list of formulas of the positive multiple zeta values up to weight 6</a>
%H A381651 <a href="/wiki/Index_to_constants#Start_of_section_M">Index to constants which are multiple zeta values</a> (4,1)
%F A381651 zetamult(4,1) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n)) = 2*zeta(5) - zeta(2)*zeta(3) = zetamult(3,1,1).
%e A381651 0.0965511599894437344656455314289...
%t A381651 RealDigits[2 Zeta[5] - Zeta[2] Zeta[3], 10, 105][[1]]
%t A381651 (* slowly convergent *)
%t A381651 sum = 0; Monitor[Do[Do[sum = sum + N[1/(m^4 n)], {n, 1, m - 1}, 50], {m, 2, 10000}], m]; Print[sum]
%o A381651 (PARI) zetamult([4,1])
%K A381651 nonn,cons
%O A381651 0,2
%A A381651 _Artur Jasinski_, Mar 03 2025