cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381655 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,1) = zetamult(3, 1, 1, 1).

This page as a plain text file.
%I A381655 #8 Aug 07 2025 14:53:22
%S A381655 0,4,0,5,3,6,8,9,7,2,7,1,5,1,9,7,3,7,8,2,9,0,4,5,9,0,7,9,3,9,6,9,6,4,
%T A381655 8,2,3,3,4,4,9,5,4,1,4,6,4,2,6,9,5,8,3,4,3,1,6,0,8,9,4,1,7,0,5,3,9,5,
%U A381655 7,2,0,9,1,1,0,7,9,1,3,7,2,4,2,8,9,8,3,9,3,4,1,9,4,6,4,2,6,3,7,5,6,7,7,4,3,4,3
%N A381655 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,1) = zetamult(3, 1, 1, 1).
%C A381655 For complete list of formulas of the positive multiple zeta values up to weight 6 see A381651.
%F A381655 zetamult(5,1) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^5*n)) = 3*zeta(6)/4 - zeta(3)^2/2 = zetamult(3,1,1,1).
%e A381655 0.04053689727151973782904590793969648...
%t A381655 RealDigits[3*Zeta[6]/4 - Zeta[3]^2/2, 10, 106][[1]]
%o A381655 (PARI) zetamult([3,1,1,1])
%Y A381655 Cf. A381651, A381652, A381653, A381654, A381656, A381657.
%K A381655 nonn,cons
%O A381655 0,2
%A A381655 _Artur Jasinski_, Mar 11 2025