A381674 a(n) = product of numbers k < n such that 1 < gcd(k,n) and rad(k) != rad(n).
1, 1, 1, 1, 1, 24, 1, 6, 6, 1920, 1, 17280, 1, 322560, 97200, 10080, 1, 58060800, 1, 1393459200, 51438240, 40874803200, 1, 536481792000, 3000, 25505877196800, 9797760, 535623421132800, 1, 40999294770610176000000, 1, 41845579776000, 51855036710400, 23310331287699456000
Offset: 1
Keywords
Examples
Table of n and a(n) for select n, showing exponents of prime factors of the latter and row n of A381094: 1 1 1 n a(n) 2 3 5 7 1 3 7 Row n of A381094 --------------------------------------------------------------------------------------- 6 24 3, 1 {2,3,4} 8 6 1, 1 {6} 9 6 1, 1 {6} 10 1920 7, 1, 1 {2,4,5,6,8} 12 17280 7, 3, 1 {2,3,4,8,9,10} 14 322560 10, 2, 1, 1 {2,4,6,7,8,10,12} 15 97200 4, 5, 2 {3,5,6,9,10,12} 16 10080 5, 2, 1, 1 {6,10,12,14} 18 58060800 12, 4, 2, 1 {2,3,4,8,9,10,14,15,16} 20 1393459200 15, 5, 2, 1 {2,4,5,6,8,12,14,15,16,18} 24 536481792000 15, 5, 3, 2, 1 {2,3,4,8,9,10,14,15,16,20,21,22} 25 3000 3, 1, 3 {10,15,20} 30 40999294770610176000000 25,13, 6, 3, 1, 1 {2,3,4,5,6,8,9,10,12,14,..,28} 32 41845579776000 16, 6, 3, 2, 1, 1 {6,10,12,14,18,20,22,24,26,28,30} 36 11358323143857930240000 25,10, 4, 3, 2, 1, 1 {2,3,4,8,9,10,14,15,16,20,..,34} a(n) = 6 for n = 8 or 9, since 6 is the only number less than n that shares a factor with n but rad(6) != rad(n). a(6) = (2*3)*(4) = 24. a(10) = (2*4*6*8)*(5) = 1920. a(12) = (2*4*8*10)*(3*9) = 17280, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..599
- Michael De Vlieger, Log log scatterplot of log_10(a(n)), n = 1..2^14, showing n that are prime powers in gold, n that are squarefree in green, and other n in blue and magenta, where magenta additionally represents powerful n that are not prime powers.
- Michael De Vlieger, Plot prime(i)^m | a(n) at (x,y) = (n, i), n = 1..2048, 2X vertical exaggeration, with a color function representing m, where black represents m = 1, red m = 2, ..., magenta represents the largest m in the dataset, i.e., m = 2035.
Programs
-
Mathematica
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Times @@ Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}]
Comments