This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381675 #5 Mar 22 2025 19:05:06 %S A381675 4,24,1920,322560,40874803200,25505877196800,23310331287699456000, %T A381675 31888533201572855808000,108431217215972213061058560000, %U A381675 2373442412632986039472006832848896000000,8829205774994708066835865418197893120000000,945837910352576904120619801361499836578686566400000000 %N A381675 a(n) = p*2^(p - 1)*(p - 1)!, where p = prime(n). %C A381675 Let k = 2*prime(n). Then a(n) = product of multiples m*p < k, p|k. %C A381675 Proper subset of A025487, itself a proper subset of A055932. %H A381675 Michael De Vlieger, <a href="/A381675/b381675.txt">Table of n, a(n) for n = 1..79</a> %F A381675 a(n) = Product_{p|k} Product_{m=1..k/p-1} m*p, where k = 2*prime(n). %F A381675 gpf(a(n)) = prime(n). %e A381675 Table of n, A100484(n), and a(n) for n = 1..12, showing prime power decomposition via a list of exponents of prime factors: %e A381675 Exponents of prime factors: %e A381675 1 1 1 1 2 2 3 3 %e A381675 n 2*prime(n) a(n) 2 3 5 7 1 3 7 9 3 9 1 7 %e A381675 ---------------------------------------------------------- %e A381675 1 4 4 2 %e A381675 2 6 24 3. 1 %e A381675 3 10 1920 7. 1.1 %e A381675 4 14 322560 10. 2.1.1 %e A381675 5 22 40874803200 18. 4.2.1.1 %e A381675 6 26 25505877196800 22. 5.2.1.1.1 %e A381675 7 34 23310331287699456000 31. 6.3.2.1.1.1 %e A381675 8 38 34. 8.3.2.1.1.1.1 %e A381675 9 46 41. 9.4.3.2.1.1.1.1 %e A381675 10 58 53.13.6.4.2.2.1.1.1.1 %e A381675 11 62 56.14.7.4.2.2.1.1.1.1.1 %e A381675 12 74 70.17.8.5.3.2.2.1.1.1.1.1 %e A381675 ---------------------------------------------------------- %e A381675 1 1 1 1 2 2 3 3 %e A381675 2 3 5 7 1 3 7 9 3 9 1 7 %e A381675 a(1) = 4 = 2*2. %e A381675 a(2) = 24 = (2*4) * 3. %e A381675 a(3) = 1920 = (2*4*6*8) * 5. %e A381675 a(4) = 322560 = (2*4*6*8*10*12) * 7, etc. %t A381675 Table[p = Prime[n]; p*2^(p - 1)*(p - 1)!, {n, 12}] %Y A381675 Cf. A025487, A055932, A100484, A381674. %K A381675 nonn,easy %O A381675 1,1 %A A381675 _Michael De Vlieger_, Mar 15 2025