cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381681 a(n) is one of two integer components (with A000254) used in computing the inverse second moment of X+n, where X~Poisson(1).

This page as a plain text file.
%I A381681 #38 Apr 29 2025 23:31:44
%S A381681 0,1,2,7,30,159,998,7251,59862,553591,5669406,63698427,779065694,
%T A381681 10304068863,146547757014,2230287456259,36165665815878,
%U A381681 622513383121671,11336090988469742,217741030441959051,4399571340398826126,93286012779568250767,2071087588405552461414,48048511292938827392403
%N A381681 a(n) is one of two integer components (with A000254) used in computing the inverse second moment of X+n, where X~Poisson(1).
%C A381681 Analog of A093344 (with alternating terms in inner summation).
%H A381681 Michael R. Powers, <a href="https://arxiv.org/abs/2503.02054">Conjunctions of Three "Euler Constants" in Poisson-Related Expressions</a>, arXiv:2503.02054 [math.NT], 2025.
%F A381681 a(n) = n! * Sum_{i=1..n} (1/i)*Sum_{j=0..i-1} (-1)^j/j!.
%e A381681 If X~Poisson(1), then E[(X+n)^(-2)] = (-1)^n * {(n-1)! * [-Ei(1)+gamma] - A000254(n-1) + e*a(n-1)}/e for n = 1,2,... where gamma is Euler's constant.
%o A381681 (PARI) a(n) = n! * sum(i=1, n, (1/i)*sum(j=0, i-1, (-1)^j/j!)); \\ _Michel Marcus_, Mar 07 2025
%Y A381681 A093344 gives one of two integer components (with A000254) used in computing the alternating inverse second moment of X+n for X~Poisson(1).
%K A381681 nonn
%O A381681 0,3
%A A381681 _Michael R. Powers_, Mar 05 2025