This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381682 #11 Mar 07 2025 06:35:58 %S A381682 1,1,2,1,3,4,1,5,9,10,1,9,22,29,30,1,17,57,92,103,104,1,33,154,309, %T A381682 389,405,406,1,65,429,1080,1570,1731,1753,1754,1,129,1222,3889,6640, %U A381682 7956,8250,8279,8280,1,257,3537,14332,29053,38650,41758,42256,42293,42294 %N A381682 Triangle read by rows: T(n,k) = number of collections of up to k+1 disjoint subsets of [n] covering [n], with [0]={}, 0<=k<=n. %C A381682 Partial row sums of A256894. %C A381682 For disjoint covers (collections without an empty set) see A102661. %C A381682 For non-disjoint collections see A381683. %C A381682 For non-disjoint covers see A369950. %F A381682 T(n,k) = 2*Sum_{j=1..k} S2(n,j) + S2(n,k+1) for n>=1. %F A381682 T(0,k) = 1. %e A381682 Triangle begins: %e A381682 1 %e A381682 1 2 %e A381682 1 3 4 %e A381682 1 5 9 10 %e A381682 1 9 22 29 30 %e A381682 1 17 57 92 103 104 %e A381682 1 33 154 309 389 405 406 %e A381682 1 65 429 1080 1570 1731 1753 1754 %e A381682 1 129 1222 3889 6640 7956 8250 8279 8280 %e A381682 1 257 3537 14332 29053 38650 41758 42256 42293 42294 %e A381682 ... %e A381682 T(3,2)=9 is the number of disjoint [3]-covering collections of up to 3 subsets: %e A381682 {{1,2,3}} %e A381682 {{1,2,3},{}} %e A381682 {{1},{2,3}} %e A381682 {{2},{1,3}} %e A381682 {{3},{1,2}} %e A381682 {{1},{2},{3}} %e A381682 {{1},{2,3},{}} %e A381682 {{2},{1,3},{}} %e A381682 {{3},{1,2},{}}. %t A381682 Table[If[n==0, 1, 2*Sum[StirlingS2[n, j], {j, k}] + StirlingS2[n, k+1]], {n, 0, 9}, {k, 0, n}] // Flatten %Y A381682 Cf. A186021 (diagonal). %Y A381682 Cf. A102661, A256894, A369950, A381683. %K A381682 nonn,tabl %O A381682 0,3 %A A381682 _Manfred Boergens_, Mar 04 2025