This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381683 #14 Mar 07 2025 06:38:11 %S A381683 1,2,0,1,2,0,1,5,9,10,0,1,14,58,125,181,209,217,218,0,1,41,401,1947, %T A381683 6091,13987,25395,38261,49701,57709,62077,63897,64457,64577,64593, %U A381683 64594,0,1,122,2802,30352,210448,1076880,4385616,14839576,42831176,107303376,236306016,462089756,809460556,1280895556,1846618196,2447698581 %N A381683 Triangle read by rows: T(n,k) = number of collections of up to k subsets of [n] covering [n], with [0]={}; n>=0, k=0..2^n. %C A381683 Partial row sums of A163353. %C A381683 For covers (collections without an empty set) see A369950. %C A381683 For disjoint collections see A381682. %C A381683 For disjoint covers see A102661. %F A381683 T(n,k) = Sum_{j=0..k} Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*binomial(2^i,j). %e A381683 Triangle begins: %e A381683 1 2 %e A381683 0 1 2 %e A381683 0 1 5 9 10 %e A381683 0 1 14 58 125 181 209 217 218 %e A381683 0 1 41 401 1947 6091 13987 25395 38261 49701 57709 62077 63897 64457 64577 64593 64594 %e A381683 ... %e A381683 T(3,2)=14 is the number of covering collections of 1 or 2 subsets of [3]: %e A381683 {{1,2,3}} %e A381683 {{},{1,2,3}} %e A381683 {{1},{2,3}} %e A381683 {{1},{1,2,3}} %e A381683 {{2},{1,3}} %e A381683 {{2},{1,2,3}} %e A381683 {{3},{1,2}} %e A381683 {{3},{1,2,3}} %e A381683 {{1,2},{1,3}} %e A381683 {{1,2},{2,3}} %e A381683 {{1,3},{2,3}} %e A381683 {{1,2},{1,2,3}} %e A381683 {{1,3},{1,2,3}} %e A381683 {{2,3},{1,2,3}}. %t A381683 Table[Sum[Sum[(-1)^(n-i)*Binomial[n, i]*Binomial[2^i, j], {i, 0, n}], {j, 0, k}], {n, 0, 4}, {k, 0, 2^n}]//Flatten %o A381683 (PARI) T(n,k) = sum(j=0,k, sum(i=0,n, (-1)^(n-i)*binomial(n,i)*binomial(2^i,j))); %o A381683 for(n=0,5,for(k=0,2^n,print1(T(n,k),", "))); \\ _Joerg Arndt_, Mar 04 2025 %Y A381683 Cf. A000371 (diagonal). %Y A381683 Cf. A102661, A163353, A369950, A381682. %K A381683 nonn,tabf %O A381683 0,2 %A A381683 _Manfred Boergens_, Mar 04 2025