This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381695 #9 Mar 09 2025 18:19:41 %S A381695 9,1,3,5,5,5,9,0,8,4,0,9,7,2,7,3,2,5,1,1,9,7,4,8,8,3,0,7,2,0,6,5,7,7, %T A381695 8,9,0,5,8,6,1,9,9,1,6,6,8,6,8,4,6,3,7,2,1,5,9,4,4,1,3,8,3,3,4,9,4,4, %U A381695 8,5,9,9,0,0,6,9,1,8,3,1,8,8,1,4,4,7,9,2,9,1 %N A381695 Decimal expansion of the isoperimetric quotient of a truncated icosidodecahedron (great rhombicosidodecahedron). %C A381695 For the definition of isoperimetric quotient of a solid, references and links, see A381684. %H A381695 Paolo Xausa, <a href="/A381695/b381695.txt">Table of n, a(n) for n = 0..10000</a> %H A381695 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A381695 Equals 36*Pi*A377797^2/(A377796^3). %F A381695 Equals (Pi/30)*(861 + 380*sqrt(5))/((1 + sqrt(3) + sqrt(5 + 2*sqrt(5)))^3) = (A000796/30)*(861 + 380*A002163)/((1 + A002194 + sqrt(5 + A010476))^3). %e A381695 0.9135559084097273251197488307206577890586199166868... %t A381695 First[RealDigits[Pi/30*(861 + 380*Sqrt[5])/(1 + Sqrt[3] + Sqrt[5 + Sqrt[20]])^3, 10, 100]] %Y A381695 Cf. A377796 (surface area), A377797 (volume). %Y A381695 Cf. A000796, A002163, A002194, A010476, A010476. %K A381695 nonn,cons,easy %O A381695 0,1 %A A381695 _Paolo Xausa_, Mar 08 2025