cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381702 a(n) is the least k such that A277847(k) = 2*n.

This page as a plain text file.
%I A381702 #15 Mar 15 2025 16:31:41
%S A381702 2,6,11,14,19,22,53,31,137,38,43,46,101,81,59,62,67,71,149,79,83,86,
%T A381702 181,94,197,103,107,121,229,118,977,127,131,134,139,142,293,151,617,
%U A381702 158,163,166,1361,258,179,362,373,191,389,199,809,206,211,214,6977,223,227,458,937,239,30977,1954,251,254,1033,262
%N A381702 a(n) is the least k such that A277847(k) = 2*n.
%e A381702 Table of n, a(n), A277847(a(n)), [row(a(n))] starts (where row(n) is row n of A381348):
%e A381702   1, 2,  2,  [0,1]
%e A381702   2, 6,  4,  [0,1,3,4]
%e A381702   3, 11, 6,  [0,1,3,4,5,9]
%e A381702   4, 14, 8,  [0,1,2,4,7,8,9,11]
%e A381702   5, 19, 10, [0,1,4,5,6,7,9,11,16,17]
%e A381702   6, 22, 12, [0,1,3,4,5,9,11,12,14,15,16,20]
%e A381702   ...
%o A381702 (Python)
%o A381702 from math import prod
%o A381702 from sympy import totient, factorint
%o A381702 def A277847(n): return prod(((m:=int(totient(p**e)))>>(~m&m-1).bit_length())+1 for p, e in factorint(n).items())
%o A381702 def a(n):
%o A381702     n,i = 2*n,1
%o A381702     while True:
%o A381702         if A277847(i) == n: return i; i += 1
%Y A381702 Cf. A381348, A277847.
%K A381702 nonn
%O A381702 1,1
%A A381702 _Aloe Poliszuk_, Mar 03 2025