This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381710 #6 Mar 12 2025 18:51:51 %S A381710 0,1,5,11,25,39,69,99,143,189,265,327,437,529,653,777,965,1107,1343, %T A381710 1531,1783,2021,2367,2619,3013,3343,3771,4153,4707,5087,5721,6229, %U A381710 6865,7437,8197,8767,9677,10391,11279,12043,13155,13919,15147,16101,17249,18301,19763 %N A381710 a(n) is the number of distinct solution sets to the quadratic equations u*x^2 + v*x + w = 0 with integer coefficients u, v, w, abs(u) + abs(v) + abs(w) <= n having a negative discriminant. %C A381710 Quadratic equations u*x^2 + v*x + w = 0 with real coefficients u, v, w and negative discriminant v^2 - 4*u*w have two complex solutions. %C A381710 a(n) is odd for n >= 2. %H A381710 Felix Huber, <a href="/A381710/b381710.txt">Table of n, a(n) for n = 1..5000</a> %H A381710 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QuadraticEquation.html">Quadratic Equation</a> %e A381710 a(3) = 5 because there are 5 equations with abs(u) + abs(v) + abs(w) <= 3 and distinct solution set having a negative discriminant: (u, v, w) = (1, 0, 1), (1, -1, 1), (1, 1, 1), (1, 0, 2), (2, 0, 1). Multiplied equations like (-1)*(1, -1, 1) = (-1, 1, -1) do not have a distinct solution set. %p A381710 A381710:=proc(n) %p A381710 option remember; %p A381710 local a,u,v,w; %p A381710 if n=1 then %p A381710 0 %p A381710 else %p A381710 a:=0; %p A381710 for u to n-1 do %p A381710 for v from 0 to n-u do %p A381710 w:=n-u-v; %p A381710 if igcd(u,v,w)=1 then %p A381710 if v=0 then %p A381710 a:=a+1 %p A381710 elif w>v^2/(4*u) then %p A381710 a:=a+2 %p A381710 fi %p A381710 fi %p A381710 od %p A381710 od; %p A381710 a+procname(n-1) %p A381710 fi; %p A381710 end proc; %p A381710 seq(A381710(n),n=1..47); %Y A381710 Cf. A067274, A091626, A091627, A364384, A364385, A365876, A365877, A379597, A381711. %K A381710 nonn %O A381710 1,3 %A A381710 _Felix Huber_, Mar 06 2025