This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381715 #10 Mar 11 2025 08:24:18 %S A381715 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,3,1,1, %T A381715 1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,4,1,1,1,1, %U A381715 1,1,1,2,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1 %N A381715 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks. %C A381715 First differs from A050361 at a(1728) = 7, A050361(1728) = 8. %C A381715 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A381715 The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into distinct constant blocks: %e A381715 {{2,2,2},{1,1,1,1,1,1}} %e A381715 {{1},{2,2,2},{1,1,1,1,1}} %e A381715 {{2},{2,2},{1,1,1,1,1,1}} %e A381715 {{1,1},{2,2,2},{1,1,1,1}} %e A381715 {{1},{2},{2,2},{1,1,1,1,1}} %e A381715 {{1},{1,1},{1,1,1},{2,2,2}} %e A381715 {{2},{1,1},{2,2},{1,1,1,1}} %e A381715 {{1},{2},{1,1},{2,2},{1,1,1}} %e A381715 with sums: %e A381715 {6,6} %e A381715 {1,5,6} %e A381715 {2,4,6} %e A381715 {2,4,6} %e A381715 {1,2,4,5} %e A381715 {1,2,3,6} %e A381715 {2,2,4,4} %e A381715 {1,2,2,3,4} %e A381715 of which 7 are distinct, so a(1728) = 7. %t A381715 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A381715 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A381715 mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; %t A381715 Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&&And@@SameQ@@@#&]]],{n,100}] %Y A381715 Without distinct blocks (A000688) we have A381455, lower (A355731) A381453. %Y A381715 More on multiset partitions into constant blocks: A006171, A279784, A295935. %Y A381715 Positions of terms > 1 are A046099. %Y A381715 Before taking sums we had A050361. %Y A381715 For equal instead of distinct blocks we have A362421. %Y A381715 For strict instead of constant blocks we have A381441, before sums A050326. %Y A381715 For just distinct blocks we have A381452, before sums A045778. %Y A381715 For distinct sums we have A381716, before sums A381635, zeros A381636. %Y A381715 A001055 counts multiset partitions, see A317141 (upper), A300383 (lower). %Y A381715 A003963 gives product of prime indices. %Y A381715 A055396 gives least prime index, greatest A061395. %Y A381715 A056239 adds up prime indices, row sums of A112798. %Y A381715 Cf. A000720, A001222, A002846, A005117, A050342, A213242, A213385, A293511, A299202, A300385, A317142, A381870. %K A381715 nonn %O A381715 1,8 %A A381715 _Gus Wiseman_, Mar 10 2025