cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381715 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks.

This page as a plain text file.
%I A381715 #10 Mar 11 2025 08:24:18
%S A381715 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,3,1,1,
%T A381715 1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,4,1,1,1,1,
%U A381715 1,1,1,2,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1
%N A381715 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks.
%C A381715 First differs from A050361 at a(1728) = 7, A050361(1728) = 8.
%C A381715 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A381715 The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into distinct constant blocks:
%e A381715   {{2,2,2},{1,1,1,1,1,1}}
%e A381715   {{1},{2,2,2},{1,1,1,1,1}}
%e A381715   {{2},{2,2},{1,1,1,1,1,1}}
%e A381715   {{1,1},{2,2,2},{1,1,1,1}}
%e A381715   {{1},{2},{2,2},{1,1,1,1,1}}
%e A381715   {{1},{1,1},{1,1,1},{2,2,2}}
%e A381715   {{2},{1,1},{2,2},{1,1,1,1}}
%e A381715   {{1},{2},{1,1},{2,2},{1,1,1}}
%e A381715 with sums:
%e A381715   {6,6}
%e A381715   {1,5,6}
%e A381715   {2,4,6}
%e A381715   {2,4,6}
%e A381715   {1,2,4,5}
%e A381715   {1,2,3,6}
%e A381715   {2,2,4,4}
%e A381715   {1,2,2,3,4}
%e A381715 of which 7 are distinct, so a(1728) = 7.
%t A381715 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A381715 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A381715 mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
%t A381715 Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&&And@@SameQ@@@#&]]],{n,100}]
%Y A381715 Without distinct blocks (A000688) we have A381455, lower (A355731) A381453.
%Y A381715 More on multiset partitions into constant blocks: A006171, A279784, A295935.
%Y A381715 Positions of terms > 1 are A046099.
%Y A381715 Before taking sums we had A050361.
%Y A381715 For equal instead of distinct blocks we have A362421.
%Y A381715 For strict instead of constant blocks we have A381441, before sums A050326.
%Y A381715 For just distinct blocks we have A381452, before sums A045778.
%Y A381715 For distinct sums we have A381716, before sums A381635, zeros A381636.
%Y A381715 A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
%Y A381715 A003963 gives product of prime indices.
%Y A381715 A055396 gives least prime index, greatest A061395.
%Y A381715 A056239 adds up prime indices, row sums of A112798.
%Y A381715 Cf. A000720, A001222, A002846, A005117, A050342, A213242, A213385, A293511, A299202, A300385, A317142, A381870.
%K A381715 nonn
%O A381715 1,8
%A A381715 _Gus Wiseman_, Mar 10 2025