cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381716 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into constant blocks with distinct sums.

This page as a plain text file.
%I A381716 #5 Mar 11 2025 08:24:23
%S A381716 1,1,1,1,1,1,1,2,1,1,1,0,1,1,1,2,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,1,1,
%T A381716 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,0,1,1,0,4,1,1,1,1,
%U A381716 1,1,1,2,1,1,1,1,1,1,1,1,2,1,1,0,1,1,1
%N A381716 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into constant blocks with distinct sums.
%C A381716 First differs from A381635 at a(1728) = 4, A381635(1728) = 5.
%C A381716 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A381716 The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into constant multisets with distinct sums:
%e A381716   {{1,1,1,1,1,1},{2,2},{2}}
%e A381716   {{1,1,1,1,1},{1},{2,2,2}}
%e A381716   {{1,1,1,1,1},{1},{2,2},{2}}
%e A381716   {{1,1,1,1},{1,1},{2,2,2}}
%e A381716   {{1,1,1},{1,1},{1},{2,2,2}}
%e A381716 with block-sums: {1,5,6}, {2,4,6}, {1,2,3,6}, {1,2,4,5}, so a(1728) = 4.
%t A381716 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A381716 mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
%t A381716 Table[Length[Union[Sort[Total/@#]&/@Select[Join@@@Tuples[mce/@Split[prix[n]]],UnsameQ@@Total/@#&]]],{n,100}]
%Y A381716 Without distinct sums we have A000688, after sums A381455 (upper), A381453 (lower).
%Y A381716 More on multiset partitions into constant blocks: A006171, A279784, A295935.
%Y A381716 For strict instead of constant we have A381633, before sums A381634.
%Y A381716 Before taking sums we had A381635.
%Y A381716 Positions of 0 are A381636.
%Y A381716 For distinct blocks instead of sums we have A381715.
%Y A381716 A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
%Y A381716 A055396 gives least prime index, greatest A061395.
%Y A381716 A056239 adds up prime indices, row sums of A112798.
%Y A381716 Cf. A000720, A001222, A002846, A005117, A050361, A213242, A265947, A293511, A299202, A300385, A362421.
%K A381716 nonn
%O A381716 1,8
%A A381716 _Gus Wiseman_, Mar 10 2025