This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381718 #17 Apr 05 2025 18:13:56 %S A381718 1,1,2,6,23,106,549,3184,20353,141615,1063399,8554800,73281988, %T A381718 665141182,6369920854,64133095134,676690490875,7462023572238, %U A381718 85786458777923,1025956348473929,12739037494941490 %N A381718 Number of normal multiset partitions of weight n into sets with distinct sums. %C A381718 We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks. %e A381718 The a(1) = 1 through a(3) = 6 multiset partitions: %e A381718 {{1}} {{1,2}} {{1,2,3}} %e A381718 {{1},{2}} {{1},{1,2}} %e A381718 {{1},{2,3}} %e A381718 {{2},{1,2}} %e A381718 {{2},{1,3}} %e A381718 {{1},{2},{3}} %e A381718 The a(4) = 23 factorizations: %e A381718 2*3*6 5*30 3*30 2*30 210 %e A381718 10*15 6*15 6*10 2*105 %e A381718 2*5*15 2*3*15 2*3*10 3*70 %e A381718 3*5*10 5*42 %e A381718 7*30 %e A381718 6*35 %e A381718 10*21 %e A381718 2*3*35 %e A381718 2*5*21 %e A381718 2*7*15 %e A381718 3*5*14 %e A381718 2*3*5*7 %t A381718 allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; %t A381718 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A381718 mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; %t A381718 Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}] %Y A381718 For distinct blocks instead of sums we have A116539, see A050326. %Y A381718 Without distinct sums we have A116540 (normal set multipartitions). %Y A381718 Twice-partitions of this type are counted by A279785. %Y A381718 Without strict blocks we have A326519. %Y A381718 Factorizations of this type are counted by A381633. %Y A381718 For constant instead of strict blocks we have A382203. %Y A381718 For distinct sizes instead of sums we have A382428, non-strict blocks A326517. %Y A381718 For equal instead of distinct block-sums we have A382429, non-strict blocks A326518. %Y A381718 A000670 counts patterns, ranked by A055932 and A333217, necklace A019536. %Y A381718 A001055 count factorizations, strict A045778. %Y A381718 Normal multiset partitions: A034691, A035310, A255906. %Y A381718 Set multipartitions: A089259, A270995, A296119, A318360. %Y A381718 Cf. A000110, A007716, A050320, A255903, A275780, A317532, A317583, A321469, A381635, A382204, A382214, A382216. %K A381718 nonn %O A381718 0,3 %A A381718 _Gus Wiseman_, Mar 26 2025 %E A381718 a(10)-a(11) from _Robert Price_, Mar 31 2025 %E A381718 a(12)-a(20) from _Christian Sievers_, Apr 05 2025