cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381721 Sum of the legs of the unique primitive Pythagorean triple whose inradius is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A381721 #16 Jun 16 2025 09:44:12
%S A381721 17,7,31,49,127,287,721,1799,4607,11857,30751,79999,208657,544967,
%T A381721 1424671,3726449,9750527,25518367,66793681,174844999,457712767,
%U A381721 1198247057,3136953631,8212492799,21500328977,56288177287,147363690271,385802064049,1010041159807,2644319243807,6922913058001,18124414244999,47450320478207
%N A381721 Sum of the legs of the unique primitive Pythagorean triple whose inradius is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%D A381721 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.
%H A381721 Miguel-Ángel Pérez García-Ortega, <a href="/A381721/a381721.pdf">El Libro de las Ternas Pitagóricas</a>
%H A381721 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-6,4,2,-1).
%F A381721 a(n) = A380821(n,1) + A380821(n,2).
%F A381721 a(n) = 2*(Lucas(n))^2 + 4*Lucas(n) + 1.
%F A381721 G.f.: (x^5-33*x^4+41*x^3+37*x^2-61*x+17)/((x-1)*(x+1)*(x^2-3*x+1)*(x^2+x-1)). - _Alois P. Heinz_, Jun 16 2025
%e A381721 For n=2, the short leg is A380821(2,1) = 7 and the long leg is A380821(2,2) = 24 so the semiperimeter is then a(2) = 7 + 24 = 31.
%t A381721 a=Table[LucasL[n],{n,0,35}];Apply[Join,Map[{2#^2+4#+1}&,a]]
%Y A381721 Cf. A380821, A380823, A380824, A000032.
%K A381721 nonn,easy
%O A381721 0,1
%A A381721 _Miguel-Ángel Pérez García-Ortega_, Mar 05 2025
%E A381721 a(19) corrected by _Georg Fischer_, Jun 16 2025