This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381727 #16 Mar 22 2025 11:17:08 %S A381727 2,4,1,4,13,64,513,4480,41197,444416,5597201,77253632,1153902701, %T A381727 18870222848,336018968449,6428081455104,131386321421901, %U A381727 2865273888571392,66426533670738769,1629643279560867840,42175861619149917325,1148845693539400548352,32856688248674995989889 %N A381727 Number of minimum connected dominating sets in the n X n white bishop graph. %H A381727 Andrew Howroyd, <a href="/A381727/b381727.txt">Table of n, a(n) for n = 2..200</a> %H A381727 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConnectedDominatingSet.html">Connected Dominating Set</a>. %H A381727 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WhiteBishopGraph.html">White Bishop Graph</a>. %F A381727 a(n) = Sum_{k=1..floor(n\2)-1} A072590(n-1-2*k, 2*k) for n >= 4. - _Andrew Howroyd_, Mar 20 2025 %t A381727 Join[{2, 4}, Table[Sum[(2 k)^(n - 2 k - 2) (n - 2 k - 1)^(2 k - 1), {k, Floor[n/2] - 1}], {n, 4, 20}]] (* _Eric W. Weisstein_, Mar 22 2025 *) %o A381727 (PARI) \\ B(n, k) is A072590. %o A381727 B(n,k) = n^(k-1) * k^(n-1) %o A381727 a(n) = if(n <= 3, 2*n-2, sum(k=1, n\2-1, B(n-1-2*k, 2*k))) \\ _Andrew Howroyd_, Mar 20 2025 %Y A381727 Cf. A381726 (black bishop). %Y A381727 Cf. A072590, A132609, A289169, A303144, A323501. %K A381727 nonn %O A381727 2,1 %A A381727 _Eric W. Weisstein_, Mar 05 2025 %E A381727 a(10) onwards from _Andrew Howroyd_, Mar 20 2025