cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381733 Number of divisors d of n such that 2^omega(n + d) = tau(n + d), where omega = A001221 and tau = A000005.

This page as a plain text file.
%I A381733 #9 Mar 15 2025 04:33:10
%S A381733 1,1,1,2,2,1,1,1,1,2,1,3,2,2,1,1,1,2,1,3,2,2,1,2,2,1,1,4,2,3,1,2,2,2,
%T A381733 2,4,2,2,2,2,2,1,1,3,1,2,1,1,0,2,1,3,1,2,2,3,2,2,1,5,2,1,2,2,4,3,1,4,
%U A381733 2,3,1,3,2,1,1,4,2,2,1,2,1,2,1,5,3,2,1,2,1,4,1,4,2,2,2,2,1,1,2,4
%N A381733 Number of divisors d of n such that 2^omega(n + d) = tau(n + d), where omega = A001221 and tau = A000005.
%t A381733 a[n_]:=Length[Select[Divisors[n], DivisorSigma[0, #+n]==2^PrimeNu[#+n]&]]; Array[a,100] (* _Stefano Spezia_, Mar 07 2025 *)
%o A381733 (Magma) [#[d: d in Divisors(n) | 2^#PrimeDivisors(n+d) eq #Divisors(n+d)]: n in [1..100]];
%Y A381733 Cf. A000005, A001221, A005117, A381136, A381138.
%K A381733 nonn
%O A381733 1,4
%A A381733 _Juri-Stepan Gerasimov_, Mar 05 2025