This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381750 #23 May 30 2025 23:15:45 %S A381750 6,12,14,24,39,56,62,112,120,155,254,992,1984,3279,5219,16256,16382, %T A381750 19607,32512,70643,97655,208919,262142,363023,402233,712979,1040603, %U A381750 1048574,1508597,2265383,2391483,4685519,5207819,6728903,21243689,25239899,56328959,61035155,67100672 %N A381750 Nonprime-powers k such that, for any prime p dividing k and m = 1+floor(log k/log p), rad(p^m (mod k)) divides k, where rad = A007947. %C A381750 The number p^m is the smallest power of p dividing k that exceeds k, where m = 1+floor(log k/log p). %C A381750 Let S(n,p) be the set of distinct power residues r (mod n) beginning with empty product and recursively multiplying by prime p | n. For example, S(10,2) = {1,2,4,8,6}. %C A381750 Prime powers k = p^m, m >= 0 have omega(k) = 1 and all r in S(n,p) are such that rad(r) | n. %C A381750 Numbers k in this sequence have omega(k) > 1 and all r in S(n,p) are such that rad(r) | n. %C A381750 A139257 is a proper subset since 2^m is congruent to 2 (mod 2^m-2). %C A381750 Intersection of this sequence and A381525 is {6}. %C A381750 Row a(n) of A381799 only contains powers of primes, i.e., row a(n) of A381799 is a proper subset of A000961. %e A381750 Table of a(n) for n = 1..10, showing prime decomposition (facs(a(n))), and S(n,p_x), where x = 1 denotes the smallest prime factor, x = 2, the second smallest prime factor, etc. %e A381750 Numbers in row n of A381799: %e A381750 n a(n) facs(a(n)) S(n,p_1) S(n,p_2) S(n,p_3) %e A381750 --------------------------------------------------------------------- %e A381750 1 6 2 * 3 {1,2,4}, {1,3} %e A381750 2 12 2^2 * 3 {1,2,4,8}, {1,3,9} %e A381750 3 14 2 * 7 {1,2,4,8}, {1,7} %e A381750 4 24 2^3 * 3 {1,2,4,8,16}, {1,3,9} %e A381750 5 39 3 * 13 {1,3,9,27}, {1,13} %e A381750 6 56 2^3 * 7 {1,2,4,8,16,32}, {1,7,49} %e A381750 7 62 2 * 31 {1,2,4,8,16,32}, {1,31} %e A381750 8 112 2^4 * 7 {1,2,4,8,16,32,64}, {1,7,49} %e A381750 9 120 2^3 * 3 * 5 {1,2,4,8,16,32,64}, {1,3,9,27,81}, {1,5,25} %e A381750 10 155 5 * 31 {1,5,25,125}, {1,31} %e A381750 . %e A381750 a(1) = 6, the smallest number that is not a prime power, since 2^3 mod 6 = 2, and 3^2 mod 6 = 3, both divide 6. %e A381750 10 is not in the sequence since 2^4 mod 10 = 6, rad(6) does not divide 10. %e A381750 a(2) = 12 since 2^4 mod 12 = 4, rad(4) | 12, and 3^3 mod 12 = 3, rad(3) | 12. %e A381750 a(3) = 14 since 2^4 mod 14 = 2 and 7^2 mod 14 = 7, both divide 14. %e A381750 15 is not in the sequence since 3^3 mod 15 = 12, rad(12) does not divide 15, etc. %t A381750 nn = 10^5; %t A381750 Monitor[Reap[Do[ %t A381750 If[! PrimePowerQ[n], %t A381750 If[AllTrue[ %t A381750 Map[PowerMod[#, 1 + Floor@ Log[#, n], n] &, FactorInteger[n][[All, 1]] ], %t A381750 Divisible[n, rad[#]] &], %t A381750 Sow[n] ] ], {n, 2, nn}] ][[-1, 1]], n] %Y A381750 Cf. A000961, A007947, A024619, A139257, A381525, A381799. %K A381750 nonn %O A381750 1,1 %A A381750 _Michael De Vlieger_, Mar 27 2025