A381762 Numbers k such that S(k) sets a new record, where S(k) denotes the sum of the reciprocals of odd elements in the Collatz sequence which starts at k.
1, 3, 7, 9, 559, 745, 993
Offset: 1
Programs
-
Mathematica
f[n_] := Total[1/Select[NestWhileList[If[OddQ[#], 3*# + 1, #/2] &, n, # > 1 &], OddQ]]; seq[lim_] := Module[{s = {}, fm = 0, f1}, Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[s, n]], {n, 1, lim}]; s]; seq[1000] (* Amiram Eldar, Mar 06 2025 *)
-
Python
from fractions import Fraction def S(n): arr = [] while True: n //= (n - (n & (n - 1))) arr.append(n) if n == 1: break n = 3 * n + 1 return sum(Fraction(1, x) for x in arr) m = 0 for n in range(1, 1000): k = S(n) if m < k: m = k print(n)
Comments