A381769 a(n) is the area of the largest rectangle that can be formed from n sticks whose lengths are 1, 2, ..., n.
0, 0, 0, 0, 3, 12, 25, 49, 81, 121, 182, 272, 380, 506, 676, 900, 1156, 1444, 1806, 2256, 2756, 3306, 3969, 4761, 5625, 6561, 7656, 8930, 10302, 11772, 13456, 15376, 17424, 19600, 22052, 24806, 27722, 30800, 34225, 38025, 42025, 46225, 50850, 55932, 61256, 66822, 72900, 79524, 86436, 93636
Offset: 0
Examples
For n = 5, the five sticks can be arranged to form a 4 X 3 rectangle, so a(5) = 12. Clockwise from top, the sticks have lengths 5, 3, 4, 2 + 1. _ _ _ _ _ | | | | |_ _ _ _|
Links
- Daniel Mondot, Table of n, a(n) for n = 0..10000
- Daniel Mondot, Proof of Theorem 1.
Programs
-
Mathematica
a381769[n_] := Which[n < 4, 0, n == 4, 3, True, Module[{k = Quotient[n+4, 8], r}, k *= n + (r = n - 8*k) + 1; Which[-3 < r < 2, k^2, r == 2 || r == -3, k*(k+1), True, (k+1)*(k+2)]]]; Array[a381769, 50, 0] (* Paolo Xausa, Jul 23 2025, after M. F. Hasler *)
-
PARI
A381769(n)=if(n>4, my(k=n\/8, r=n-k*8); ((r<-3||r>2)*2+k*=n+1+r)*(k+(r>1 || r<-2)), n==4, 3) apply(A381769, [0..55]) \\ M. F. Hasler, Mar 10 2025
-
Python
def A381769(n): k=(n+4)//8; r=n-k*8; k*=n+r+1; return(k if -4
4 else (n==4)*3 # M. F. Hasler, Mar 11 2025
Extensions
Edited by N. J. A. Sloane, Mar 10 2025
Comments