This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381802 #7 Mar 22 2025 19:05:15 %S A381802 0,0,1,1,3,1,5,4,6,3,9,4,11,8,7,11,15,6,17,11,12,9,21,13,22,11,23,19, %T A381802 27,11,29,26,24,23,23,20,35,17,33,28,39,18,41,28,30,32,45,32,46,22,31, %U A381802 35,51,23,47,44,36,27,57,32,59,54,50,57,55,34,65,55,54,35 %N A381802 a(n) = number of distinct residues r mod n of numbers k congruent to r (mod n) such that rad(k) does not divide n, where rad = A007947. %H A381802 Michael De Vlieger, <a href="/A381802/b381802.txt">Table of n, a(n) for n = 1..10000</a> %H A381802 Michael De Vlieger, <a href="/A381802/a381802.png">Log log scatterplot of a(n)</a>, n = 1..2^16, showing prime n in red, proper prime power n in gold, squarefree composite n in green, and n that is neither squarefree nor prime power in blue and magenta, with magenta also representing powerful n that is not a prime power. %F A381802 a(n) = n - A381800(n). %F A381802 a(n) > 0 for n > 2. %F A381802 a(n) - phi(n) + 1 >= 0, where phi = A000010. %F A381802 a(p) = p-2. %F A381802 a(p^m) = n - m - 1. %e A381802 a(n) = 0 for n = 1..2, since there do not exist any residues mod n that do not represent a power of n. %e A381802 n a(n) [0..n-1] \ row n of A381801. %e A381802 ------------------------------------------------ %e A381802 6 1 {5} %e A381802 10 3 {3,7,9} %e A381802 12 4 {5,7,10,11} %e A381802 14 8 {3,5,6,9,10,11,12,13} %e A381802 15 7 {2,4,7,8,11,13,14} %e A381802 18 6 {5,7,11,13,15,17} %e A381802 20 11 {3,6,7,9,11,13,14,15,17,18,19} %e A381802 21 12 {2,4,5,8,10,11,13,14,16,17,19,20} %e A381802 22 9 {3,5,7,9,13,15,17,19,21} %e A381802 24 13 {5,7,10,11,13,14,15,17,19,20,21,22,23} %e A381802 26 11 {3,5,7,9,11,15,17,19,21,23,25} %e A381802 28 19 {3,5,6,9,10,11,12,13,15,17,18,19,20,22,23,24,25,26,27} %e A381802 30 11 {7,11,13,14,17,19,22,23,26,28,29} %t A381802 f[x_] := Block[{c, ff, m, r, p, s, w}, c[_] := True; %t A381802 ff = FactorInteger[x][[All, 1]]; w = Length[ff]; s = {1}; %t A381802 Do[Set[p[i], ff[[i]]], {i, w}]; %t A381802 Do[Set[s, Union@ Flatten@ Join[s, #[[-1, 1]] ] ] &@ Reap@ %t A381802 Do[m = s[[j]]; %t A381802 While[Sow@ Set[r, Mod[m*p[i], x]]; %t A381802 c[r], c[r] = False; %t A381802 m *= p[i]], {j, Length[s]}], {i, w}]; s]; %t A381802 {0}~Join~Table[n - Length@ f[n], {n, 2, 120}] %Y A381802 Cf. A000010, A381800, A381801. %K A381802 nonn %O A381802 1,5 %A A381802 _Michael De Vlieger_, Mar 14 2025