This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381808 #8 Jun 04 2025 21:09:03 %S A381808 1,1,1,2,4,12,38,145,586,2619,12096,58370,285244,1436815,7281062, %T A381808 37489525,193417612 %N A381808 Number of multisets that can be obtained by choosing a strict integer partition of m for each m = 0..n and taking the multiset union. %e A381808 The a(1) = 1 through a(5) = 12 multisets: %e A381808 {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5} %e A381808 {1,1,2,2} {1,1,2,2,4} {1,1,2,2,4,5} %e A381808 {1,1,2,3,3} {1,1,2,3,3,5} %e A381808 {1,1,1,2,2,3} {1,1,2,3,4,4} %e A381808 {1,2,2,3,3,4} %e A381808 {1,1,1,2,2,3,5} %e A381808 {1,1,1,2,2,4,4} %e A381808 {1,1,1,2,3,3,4} %e A381808 {1,1,2,2,2,3,4} %e A381808 {1,1,2,2,3,3,3} %e A381808 {1,1,1,1,2,2,3,4} %e A381808 {1,1,1,2,2,2,3,3} %t A381808 Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@Range[n]]]],{n,0,10}] %Y A381808 Set systems: A050342, A116539, A296120, A318361. %Y A381808 The number of possible choices was A152827, non-strict A058694. %Y A381808 Set multipartitions with distinct sums: A279785, A381718. %Y A381808 Choosing prime factors: A355746, A355537, A327486, A355744, A355742, A355741. %Y A381808 Choosing divisors: A355747, A355733. %Y A381808 Constant instead of strict partitions: A381807, A066843. %Y A381808 A000041 counts integer partitions, strict A000009, constant A000005. %Y A381808 A066723 counts partitions coarser than {1..n}, primorial case of A317141. %Y A381808 A265947 counts refinement-ordered pairs of integer partitions. %Y A381808 A321470 counts partitions finer than {1..n}, primorial case of A300383. %Y A381808 Cf. A001970, A018818, A213385, A299200, A321467, A321468, A321471, A321514, A355731, A381453, A381455. %K A381808 nonn,more %O A381808 0,4 %A A381808 _Gus Wiseman_, Mar 14 2025 %E A381808 a(12)-a(16) from _Christian Sievers_, Jun 04 2025