cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381454 Number of multisets that can be obtained by choosing a strict integer partition of each prime index of n and taking the multiset union.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 2, 2, 1, 5, 1, 6, 2, 2, 3, 8, 1, 3, 4, 1, 2, 10, 2, 12, 1, 3, 5, 4, 1, 15, 6, 4, 2, 18, 2, 22, 3, 2, 8, 27, 1, 3, 3, 5, 4, 32, 1, 6, 2, 6, 10, 38, 2, 46, 12, 2, 1, 8, 3, 54, 5, 8, 4, 64, 1, 76, 15, 3, 6, 6, 4, 89, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2025

Keywords

Comments

First differs from A357982 at a(25) = 3, A357982(25) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set multipartition {1,1,2} -> {4}.

Examples

			The a(25) = 3 multisets are: {3,3}, {1,2,3}, {1,1,2,2}.
		

Crossrefs

For constant instead of strict partitions see A381453, A355733, A381455, A000688.
Positions of 1 are A003586.
The upper version is A381078, before sums A050320.
For distinct block-sums see A381634, A381633, A381806.
Multiset partitions of prime indices:
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For set systems (A050326, zeros A293243) see A381441 (upper).
- For sets of constant multisets (A050361) see A381715.
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For sets of constant multisets with distinct sums (A381635, zeros A381636) see A381716.
More on set systems: A050342, A116539, A296120, A318361.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]]]],{n,100}]

Formula

a(A002110(n)) = A381808(n).

A381807 Number of multisets that can be obtained by choosing a constant partition of each m = 0..n and taking the multiset union.

Original entry on oeis.org

1, 1, 2, 4, 12, 24, 92, 184, 704, 2016, 7600, 15200, 80664, 161328, 601696, 2198824, 9868544, 19737088, 102010480, 204020960
Offset: 0

Views

Author

Gus Wiseman, Mar 13 2025

Keywords

Comments

A constant partition is a multiset whose parts are all equal. There are A000005(n) constant partitions of n.

Examples

			The a(1) = 1 through a(4) = 12 multisets:
  {1}  {1,2}    {1,2,3}        {1,2,3,4}
       {1,1,1}  {1,1,1,3}      {1,1,1,3,4}
                {1,1,1,1,2}    {1,2,2,2,3}
                {1,1,1,1,1,1}  {1,1,1,1,2,4}
                               {1,1,1,2,2,3}
                               {1,1,1,1,1,1,4}
                               {1,1,1,1,1,2,3}
                               {1,1,1,1,2,2,2}
                               {1,1,1,1,1,1,1,3}
                               {1,1,1,1,1,1,2,2}
                               {1,1,1,1,1,1,1,1,2}
                               {1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

The number of possible choices was A066843.
Multiset partitions into constant blocks: A006171, A279784, A295935.
Choosing prime factors: A355746, A355537, A327486, A355744, A355742, A355741.
Choosing divisors: A355747, A355733.
Sets of constant multisets with distinct sums: A381635, A381636, A381716.
Strict instead of constant partitions: A381808, A058694, A152827.
A000041 counts integer partitions, strict A000009, constant A000005.
A000688 counts multiset partitions into constant blocks.
A050361 and A381715 count multiset partitions into constant multisets.
A066723 counts partitions coarser than {1..n}, primorial case of A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of A300383.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@Range[n]]]],{n,0,10}]

Formula

Primorial case of A381453: a(n) = A381453(A002110(n)).

Extensions

a(16)-a(19) from Christian Sievers, Jun 04 2025
Showing 1-2 of 2 results.