A381810 Array read by downward antidiagonals: A(n,k) is a generalization of odd columns of A125790 defined in Comments for n > 0, k >= 0.
2, 4, 4, 6, 16, 6, 8, 36, 20, 10, 10, 64, 42, 84, 14, 12, 100, 72, 286, 100, 20, 14, 144, 110, 680, 322, 120, 26, 16, 196, 156, 1330, 744, 364, 140, 36, 18, 256, 210, 2300, 1430, 816, 406, 656, 46, 20, 324, 272, 3654, 2444, 1540, 888, 3396, 740, 60, 22, 400, 342, 5456, 3850, 2600, 1650, 10816, 3682, 840, 74
Offset: 1
Examples
Array begins: =========================================================== n\k| 0 1 2 3 4 5 6 7 ... ---+------------------------------------------------------- 1 | 2, 4, 6, 8, 10, 12, 14, 16 ... 2 | 4, 16, 36, 64, 100, 144, 196, 256 ... 3 | 6, 20, 42, 72, 110, 156, 210, 272 ... 4 | 10, 84, 286, 680, 1330, 2300, 3654, 5456 ... 5 | 14, 100, 322, 744, 1430, 2444, 3850, 5712 ... 6 | 20, 120, 364, 816, 1540, 2600, 4060, 5984 ... 7 | 26, 140, 406, 888, 1650, 2756, 4270, 6256 ... 8 | 36, 656, 3396, 10816, 26500, 55056, 102116, 174336 ... ...
Crossrefs
Programs
-
PARI
upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1 A(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3); v1 = upto1(L+2); v2 = vector(L+2, i, vecsum(v1[i])); for(i=1, 2*m, v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); for(i=1, B, v3 = v2; for(j=1, L-i+1, v2[j+1] = sum(k=1, j+1, v1[j+1][k]*v3[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v2[A+2]
-
PARI
upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1 upto2(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3, v4, v5); v1 = upto1(L+2); v2 = vector(L+2, i, 1); v3 = vector(m+1, i, 0); for(s=0, m, for(i=1, min(s+1,2), v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); v4 = v2; for(i=1, B, v5 = v4; for(j=1, L-i+1, v4[j+1] = sum(k=1, j+1, v1[j+1][k]*v5[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v3[s+1] = v4[A+2]); v3 \\ slightly modified version of the first program, some kind of memoization; generates A(n,k) for k=0..m
Formula
A(2^(n-1),k) = A125790(n,2*k+1) for n > 0, k >= 0.
Conjectured formulas: (Start)
A(n,0) = A000123(n) for n > 0.
If we change v_i = A125790(i,2*k+1) to v_i = A125790(i,2*k) to get similar generalization of even columns, then for resulting array B(n,k) we have B(n,k) = Sum_{j=0..k} A000123(A062383(n)*j+A053645(n))*A106400(k-j) for n > 0, k >= 0.
2*(k+1) divides A(n,k) for n > 0 if (k+1) is a term of A236206.
G.f. for n-th row is f(A070939(n)+1,n) for n > 0 where f(n,k) = (Sum_{(c_0 + c_1 + ... + c_{n-1}) == 2*k (mod 2^n), 0 <= c_i < 2^n, 2^i divides c_i} x^((c_0 + c_1 + ... + c_{n-1} - 2*k)/2^n))/(1-x)^n for n > 0, k >= 0. Similarly, g.f. for n-th row of B(n,k) is f(A070939(n)+1,A053645(n)).
G.f. for n-th row is (Sum_{i=0..L(n)-1} x^i * Sum_{j=0..i} binomial(L(n)+1,j)*A(n,i-j)*(-1)^j)/(1-x)^(L(n)+1) for n > 0 where L(n) = A070939(n).
Comments