cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381810 Array read by downward antidiagonals: A(n,k) is a generalization of odd columns of A125790 defined in Comments for n > 0, k >= 0.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 8, 36, 20, 10, 10, 64, 42, 84, 14, 12, 100, 72, 286, 100, 20, 14, 144, 110, 680, 322, 120, 26, 16, 196, 156, 1330, 744, 364, 140, 36, 18, 256, 210, 2300, 1430, 816, 406, 656, 46, 20, 324, 272, 3654, 2444, 1540, 888, 3396, 740, 60, 22, 400, 342, 5456, 3850, 2600, 1650, 10816, 3682, 840, 74
Offset: 1

Views

Author

Mikhail Kurkov, May 05 2025

Keywords

Comments

This is generalization in the sense that first column of A125790 is A000123(2^(n-1)) while in this square array column zero is conjecturally A000123(n).
A(n,k) = v_{A001511(n)} where we start with vector v of fixed length L(n) = A070939(n) with elements v_i = A125790(i,2*k+1), pre-calculate A078121 up to L(n)-th row, reserve t as an empty vector of fixed length L(n) and for i=1..A119387(n+1), for j=1..L(n)-i+1 apply t := v (at the beginning of each cycle for i) and also apply v_j := Sum_{k=1..j+1} A078121(j,k-1)*t_k if R(n,L(n)-i) = 1, otherwise v_j := Sum_{k=1..j+1} A078121(j,k-1)*t_k*(-1)^(j+k+1). Here R(n,k) = floor(n/(2^k)) mod 2 is the (k+1)-th bit in the binary expansion of n.
Conjecture: sequence A(n,k) for fixed n is a polynomial of degree A070939(n).

Examples

			Array begins:
===========================================================
n\k|  0    1     2      3      4      5       6       7 ...
---+-------------------------------------------------------
1  |  2,   4,    6,     8,    10,    12,     14,     16 ...
2  |  4,  16,   36,    64,   100,   144,    196,    256 ...
3  |  6,  20,   42,    72,   110,   156,    210,    272 ...
4  | 10,  84,  286,   680,  1330,  2300,   3654,   5456 ...
5  | 14, 100,  322,   744,  1430,  2444,   3850,   5712 ...
6  | 20, 120,  364,   816,  1540,  2600,   4060,   5984 ...
7  | 26, 140,  406,   888,  1650,  2756,   4270,   6256 ...
8  | 36, 656, 3396, 10816, 26500, 55056, 102116, 174336 ...
  ...
		

Crossrefs

Programs

  • PARI
    upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1
    A(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3); v1 = upto1(L+2); v2 = vector(L+2, i, vecsum(v1[i])); for(i=1, 2*m, v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); for(i=1, B, v3 = v2; for(j=1, L-i+1, v2[j+1] = sum(k=1, j+1, v1[j+1][k]*v3[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v2[A+2]
    
  • PARI
    upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1
    upto2(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3, v4, v5); v1 = upto1(L+2); v2 = vector(L+2, i, 1); v3 = vector(m+1, i, 0); for(s=0, m, for(i=1, min(s+1,2), v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); v4 = v2; for(i=1, B, v5 = v4; for(j=1, L-i+1, v4[j+1] = sum(k=1, j+1, v1[j+1][k]*v5[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v3[s+1] = v4[A+2]); v3 \\ slightly modified version of the first program, some kind of memoization; generates A(n,k) for k=0..m

Formula

A(2^(n-1),k) = A125790(n,2*k+1) for n > 0, k >= 0.
Conjectured formulas: (Start)
A(n,0) = A000123(n) for n > 0.
A(n,k) = Sum_{j=0..k} A000123(A062383(n)*j+n)*A106400(k-j) for n > 0, k >= 0.
If we change v_i = A125790(i,2*k+1) to v_i = A125790(i,2*k) to get similar generalization of even columns, then for resulting array B(n,k) we have B(n,k) = Sum_{j=0..k} A000123(A062383(n)*j+A053645(n))*A106400(k-j) for n > 0, k >= 0.
2*(k+1) divides A(n,k) for n > 0 if (k+1) is a term of A236206.
G.f. for n-th row is f(A070939(n)+1,n) for n > 0 where f(n,k) = (Sum_{(c_0 + c_1 + ... + c_{n-1}) == 2*k (mod 2^n), 0 <= c_i < 2^n, 2^i divides c_i} x^((c_0 + c_1 + ... + c_{n-1} - 2*k)/2^n))/(1-x)^n for n > 0, k >= 0. Similarly, g.f. for n-th row of B(n,k) is f(A070939(n)+1,A053645(n)).
G.f. for n-th row is (Sum_{i=0..L(n)-1} x^i * Sum_{j=0..i} binomial(L(n)+1,j)*A(n,i-j)*(-1)^j)/(1-x)^(L(n)+1) for n > 0 where L(n) = A070939(n).
s(4*n+1) = 1 for n >= 0, s(4*n) = s(4*n+2) = 1 if A010060(n) = 1 for n > 0 where s(n) = A007814(Sum_{k=0..n-1} A(k+1,n-k-1)). (End)