A381825 Odd cubefull exponentially odd numbers: numbers whose prime factorization has only odd primes and odd exponents that are larger than 1 (except for 1 whose prime factorization is empty).
1, 27, 125, 243, 343, 1331, 2187, 2197, 3125, 3375, 4913, 6859, 9261, 12167, 16807, 19683, 24389, 29791, 30375, 35937, 42875, 50653, 59319, 68921, 78125, 79507, 83349, 84375, 103823, 132651, 148877, 161051, 166375, 177147, 185193, 205379, 226981, 273375, 274625
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Join[{1}, Select[Range[3, 300000, 2], AllTrue[FactorInteger[#][[;;, 2]], #1 > 1 && OddQ[#1] &] &]]
-
PARI
isok(k) = k == 1 || (k % 2 && #select(x -> (x == 1) || !(x % 2), factor(k)[, 2]) == 0);
Formula
Sum_{n>=1} 1/a(n) = Product_{prime p >= 3} (1 + 1/(p*(p^2-1))) = (6/7) * A065487 = 1.05539241333308876809... .
Comments