This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381842 #65 Apr 09 2025 11:21:13 %S A381842 1,1,1,1,1,1,1,1,1,2,2,2,1,1,1,1,4,10,41,103,309,691,1458,2448,3703, %T A381842 4587,5050,4587,3703,2448,1458,691,309,103,41,10,4,1,1,1,1,6,37,715, %U A381842 13710,256751,4140666,58402198,726296995,8060937770,80604620206,732149722382 %N A381842 Triangle read by rows: T(n,k) is the number of non-equivalent subsets of size k in S_n, 0 <= k <= n!. %C A381842 We say two subsets A, B of size k are equivalent if there are permutations p, q in S_n such that pAq=B. %C A381842 The n-th row contains n! + 1 entries corresponding to subsets of S_n of size 0 to n!. %H A381842 Andrew Howroyd, <a href="/A381842/b381842.txt">Table of n, a(n) for n = 0..880</a> (rows 0..6) %H A381842 Aman Kushwaha and Raghavendra Tripathi, <a href="https://arxiv.org/abs/2503.09542">A note on Erdős matrices and Marcus-Ree inequality</a>, arXiv:2503.09542 [math.MG], 2025. See p. 12. %F A381842 T(n, 1) = 1. %F A381842 T(n, 2) = A000041(n) - 1. %F A381842 T(n, k) = T(n, n!-k). %e A381842 Triangle begins: %e A381842 [0] 1, 1; %e A381842 [1] 1, 1; %e A381842 [2] 1, 1, 1; %e A381842 [3] 1, 1, 2, 2, 2, 1, 1; %e A381842 [4] 1, 1, 4, 10, 41, 103, 309, 691, 1458, 2448, 3703, 4587, 5050, ...; %Y A381842 Cf. A000041, A362763 (up to conjugation). %K A381842 nonn,tabf %O A381842 0,10 %A A381842 _Raghavendra Tripathi_, Mar 09 2025 %E A381842 a(39) onwards from _Andrew Howroyd_, Mar 09 2025