This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381854 #50 Aug 15 2025 15:54:50 %S A381854 1,1,1,2,2,1,1,6,24,51,60,24,2,1,12,96,542,2058,5316,7530,4058,541,6, %T A381854 1,20,260,2570,19680,117860,540470,1769710,3571175,3225310,736540, %U A381854 15740,24,1,30,570,8415,101610,1026852,8747890,61978340,355193925,1561232840,4753747050,8111988473,4866461728,437272014,949902,120 %N A381854 Triangle read by rows: T(n, k) is the number of invertible n X n matrices over GF(2) that can be optimally row-reduced in k steps, n >= 0, k >= 0. %C A381854 Using transvections as the generating set of the matrix group, this is the number of inequivalent minimal words in k generators; the number of elements at distance k from the identity in the corresponding Cayley graph. %C A381854 Also the number of different elements that can be represented by minimal quantum circuits of k CNOT gates on n qubits. %H A381854 Søren Fuglede Jørgensen, <a href="/A381854/b381854.txt">Table of n, a(n) for n = 0..83</a> %H A381854 Marc Bataille, <a href="https://link.springer.com/article/10.1007/s11128-022-03577-8">Quantum Circuits of CNOT gates: Optimization and Entanglement</a>, Quantum Information Processing, 21(7):269 (2022). %H A381854 Jens Emil Christensen, Søren Fuglede Jørgensen, Andreas Pavlogiannis, and Jaco van de Pol, <a href="https://doi.org/10.1007/978-3-031-97063-4_6">On Exact Sizes of Minimal CNOT Circuits</a>, RC 2025, LNCS, vol 15716, pp. 71-88; <a href="https://arxiv.org/abs/2503.01467">arXiv:2503.01467</a> [quant-ph] (2025). %H A381854 Ketan N. Patel, Igor L. Markov, and John P. Hayes, <a href="https://dlnext.acm.org/doi/10.5555/2011763.2011767">Optimal synthesis of linear reversible circuits</a>, Quantum Info. Comput., 8(3) (2008), pp. 282-294. %F A381854 T(n, 0) = 1. %F A381854 T(n, 1) = n^2 - n. %F A381854 T(n, 2) = (1/2)*(n^4 - 5*n^2 + 4*n). %F A381854 T(n, 3) = (1/6)*(n^6 + 3*n^5 - 9*n^4 - 63*n^3 + 179*n^2 - 111*n). %F A381854 Sum_{k>=0} T(n,k) = A002884(n). %e A381854 Triangle begins: %e A381854 n\k 0 1 2 3 4 5 6 7 8 9 %e A381854 0: 1 %e A381854 1: 1 %e A381854 2: 1 2 2 1 %e A381854 3: 1 6 24 51 60 24 2 %e A381854 4: 1 12 96 542 2058 5316 7530 4058 541 6 %e A381854 ... %e A381854 For n = 2, k = 1, the two matrices are [[1, 1], [0, 1]] and [[1, 0], [1, 1]]. %e A381854 For n = 2, k = 2, the two matrices are [[1, 1], [1, 0]] and [[0, 1], [1, 1]]. %e A381854 For n = 2, k = 3, the only matrix is [[0, 1], [1, 0]]. %Y A381854 Cf. A002378 (column 1), A172225 (column 2), A002884 (row sums). %K A381854 nonn,tabf,hard %O A381854 0,4 %A A381854 _Søren Fuglede Jørgensen_, Mar 08 2025