cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381864 Numbers k in A024619 such that p^(m+1) == r (mod k) where r is also in A024619 for all p | n.

This page as a plain text file.
%I A381864 #78 May 30 2025 23:15:38
%S A381864 15,33,35,44,45,51,63,65,66,69,70,75,76,77,80,85,87,88,90,91,92,95,99,
%T A381864 102,104,105,115,119,123,130,133,135,138,140,141,143,144,145,152,153,
%U A381864 154,159,160,161,170,172,174,175,176,177,180,184,185,187,188,189,190
%N A381864 Numbers k in A024619 such that p^(m+1) == r (mod k) where r is also in A024619 for all p | n.
%C A381864 This sequence intersects neither A381750 nor A382120.
%H A381864 Michael De Vlieger, <a href="/A381864/b381864.txt">Table of n, a(n) for n = 1..10000</a>
%e A381864 Table of a(n) for n = 1..12, showing prime decomposition (facs(a(n))), p_x^(m+1) mod n, where x = 1 denotes the smallest prime factor, x = 2, the second smallest prime factor, etc. Brackets appear around residues that are not prime powers.
%e A381864                        p_x^(m+1) mod n
%e A381864  n  a(n)  facs(a(n))   p_1   p_2   p_3
%e A381864 -----------------------------------------
%e A381864  1   15   3 * 5        12    10
%e A381864  2   33   3 * 11       15    22
%e A381864  3   35   5 * 7        20    14
%e A381864  4   44   2^2 * 11     20    33
%e A381864  5   45   3^2 * 5      36    35
%e A381864  6   51   3 * 17       30    34
%e A381864  7   63   3^2 * 7      18    28
%e A381864  8   65   5 * 13       60    39
%e A381864  9   66   2 * 3 * 11   62    15    55
%e A381864 10   69   3 * 23       12    46
%e A381864 11   70   2 * 5 * 7    58    55    63
%e A381864 12   75   3 * 5^2       6    50
%t A381864 nn = 190, Reap[Do[If[! PrimePowerQ[n], If[NoneTrue[Map[PowerMod[#, 1 + Floor@ Log[#, n], n] &, FactorInteger[n][[All, 1]] ], PrimePowerQ], Sow[n]]], {n, 2, nn}] ][[-1, 1]]
%Y A381864 Cf. A000961, A024619, A381750, A382120.
%K A381864 nonn
%O A381864 1,1
%A A381864 _Michael De Vlieger_, Apr 06 2025