This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381869 #26 May 11 2025 11:53:36 %S A381869 13,11,7,7,13,17,7,17,37,3,7,41,7,7,11,11,11,11,11,13,11,13,11,7,7,17, %T A381869 7,43,41,3,3,13,11,7,13,19,7,11,11,29,7,43,3,7,11,13,23,29,3,7,7,11, %U A381869 11,11,19,13,5,5,13,37,17,3,3,7,17,17,3,11,19,13,3,7,23 %N A381869 Smallest starting prime for which the sum of 2*n consecutive primes is 0 modulo 10, or -1 if no such prime exists. %H A381869 Robert Israel, <a href="/A381869/b381869.txt">Table of n, a(n) for n = 1..10000</a> %e A381869 a(1) = 13, because 13 and 17 are 2*1 = 2 consecutive primes such that 13 + 17 = 20 and 20 modulo 10 = 0, and no smaller prime has this property. %p A381869 P:= select(isprime,[2,seq(i,i=3..10^6,2)]): %p A381869 S:= ListTools:-PartialSums(P): %p A381869 f:= proc(n) local j,t; %p A381869 for j from 1 do %p A381869 if S[2*n+j] - S[j] mod 10 = 0 then return P[j+1] fi %p A381869 od %p A381869 end proc: %p A381869 map(f, [$1..100]); # _Robert Israel_, May 08 2025 %t A381869 Do[i=1;Until[Mod[Total[Prime[Range[i,i+2*n-1]]],10]==0,i++];a[n]=Prime[i],{n,73}];Array[a,73] (* _James C. McMahon_, Mar 23 2025 *) %o A381869 (PARI) isok(p, n) = my(i=primepi(p), q=prime(2*n+i-1)); vecsum(apply(x->Mod(x,10), primes([p, q]))) == 0; %o A381869 a(n) = my(p=3); while (!isok(p, n), p=nextprime(p+1)); p; \\ _Michel Marcus_, Mar 09 2025 %o A381869 (Python) %o A381869 from sympy import nextprime, prime, sieve %o A381869 def a(n): %o A381869 plst = list(sieve.primerange(3, prime(2*n+1)+1)) %o A381869 s = sum(plst) %o A381869 while s%10: %o A381869 q = nextprime(plst[-1]) %o A381869 s += (q-plst[0]) %o A381869 plst = plst[1:] + [q] %o A381869 return plst[0] %o A381869 print([a(n) for n in range(1, 74)]) # _Michael S. Branicky_, Mar 09 2025 %Y A381869 Cf. A007652, A111324. %K A381869 nonn %O A381869 1,1 %A A381869 _Jean-Marc Rebert_, Mar 09 2025