This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381871 #9 Apr 27 2025 09:09:27 %S A381871 6,10,14,15,18,20,21,22,24,26,28,30,33,34,35,38,39,42,44,45,46,50,51, %T A381871 52,54,55,56,57,58,60,62,65,66,68,69,70,72,74,75,76,77,78,80,82,84,85, %U A381871 86,87,88,90,91,92,93,94,95,96,98,99,100,102,104,105,106,110 %N A381871 Numbers whose prime indices cannot be partitioned into constant blocks having a common sum. %C A381871 First differs from A383100 in lacking 108. %C A381871 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %C A381871 Also numbers that cannot be written as a product of prime powers with equal sums of prime indices. %C A381871 Partitions of this type are counted by A381993. %e A381871 The terms together with their prime indices begin: %e A381871 6: {1,2} %e A381871 10: {1,3} %e A381871 14: {1,4} %e A381871 15: {2,3} %e A381871 18: {1,2,2} %e A381871 20: {1,1,3} %e A381871 21: {2,4} %e A381871 22: {1,5} %e A381871 24: {1,1,1,2} %e A381871 26: {1,6} %e A381871 28: {1,1,4} %e A381871 30: {1,2,3} %t A381871 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A381871 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A381871 mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; %t A381871 Select[Range[100],Select[mps[prix[#]],SameQ@@Total/@#&&And@@SameQ@@@#&]=={}&] %Y A381871 Constant blocks: A000688, A006171, A279784, A295935, A381453 (lower), A381455 (upper). %Y A381871 Constant blocks with distinct sums: A381635, A381716. %Y A381871 For distinct instead of equal sums we have A381636, counted by A381717. %Y A381871 Partitions of this type are counted by A381993, complement A383093. %Y A381871 These are the positions of 0 in A381995. %Y A381871 A001055 counts multiset partitions of prime indices, strict A045778. %Y A381871 A050361 counts multiset partitions into distinct constant blocks. %Y A381871 A055396 gives least prime index, greatest A061395. %Y A381871 A056239 adds up prime indices, row sums of A112798. %Y A381871 A317141 counts coarsenings of prime indices, refinements A300383. %Y A381871 Cf. A000720, A000961, A001222, A265947, A321469, A381633, A381715, A381719, A381806. %K A381871 nonn %O A381871 1,1 %A A381871 _Gus Wiseman_, Mar 13 2025