cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381872 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks having a common sum.

This page as a plain text file.
%I A381872 #6 Mar 14 2025 17:10:14
%S A381872 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,3,1,1,1,1,1,1,1,1,2,1,2,1,1,2,1,2,1,1,
%T A381872 1,3,1,1,1,2,1,1,1,1,1,1,1,3,2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,1,1,1,1,
%U A381872 1,2,1,1,1,1,1,1,1,1,1,1,3,1,1,2,1,1,1
%N A381872 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks having a common sum.
%C A381872 First differs from A321455 at a(144) = 4, A321455(144) = 3.
%C A381872 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
%e A381872 The prime indices of 144 are {1,1,1,1,2,2}, with the following 4 multiset partitions having common block sum:
%e A381872   {{1,1,1,1,2,2}}
%e A381872   {{2,2},{1,1,1,1}}
%e A381872   {{1,1,2},{1,1,2}}
%e A381872   {{2},{2},{1,1},{1,1}}
%e A381872 with sums: 8, 4, 4, 2, of which 3 are distinct, so a(144) = 3.
%e A381872 The prime indices of 1296 are {1,1,1,1,2,2,2,2}, with the following 7 multiset partitions having common block sum:
%e A381872   {{1,1,1,1,2,2,2,2}}
%e A381872   {{2,2,2},{1,1,1,1,2}}
%e A381872   {{1,1,2,2},{1,1,2,2}}
%e A381872   {{2,2},{2,2},{1,1,1,1}}
%e A381872   {{2,2},{1,1,2},{1,1,2}}
%e A381872   {{1,2},{1,2},{1,2},{1,2}}
%e A381872   {{2},{2},{2},{2},{1,1},{1,1}}
%e A381872 with sums: 12, 6, 6, 4, 4, 3, 2, of which 5 are distinct, so a(1296) = 5.
%t A381872 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A381872 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A381872 mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
%t A381872 Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],SameQ@@Total/@#&]]],{n,100}]
%Y A381872 With equal blocks instead of sums we have A089723.
%Y A381872 Without equal sums we have A317141, before sums A001055, lower A300383.
%Y A381872 Positions of terms > 1 are A321454.
%Y A381872 Before taking sums we had A321455.
%Y A381872 With distinct instead of equal sums we have A381637, before sums A321469.
%Y A381872 A000041 counts integer partitions, strict A000009, constant A000005.
%Y A381872 A055396 gives least prime index, greatest A061395.
%Y A381872 A056239 adds up prime indices, row sums of A112798.
%Y A381872 A265947 counts refinement-ordered pairs of integer partitions.
%Y A381872 Other multiset partitions of prime indices:
%Y A381872 - For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
%Y A381872 - For sets of constant multisets (A050361) see A381715.
%Y A381872 - For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
%Y A381872 Cf. A000720, A000961, A001222, A279787, A279789, A305551, A306017, A321451, A321452, A321453.
%K A381872 nonn
%O A381872 1,4
%A A381872 _Gus Wiseman_, Mar 14 2025