This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381885 #13 Apr 01 2025 08:55:35 %S A381885 1,1,1,4,1,6,1,32,9,10,1,288,1,14,15,2048,1,972,1,800,21,22,1,55296, %T A381885 25,26,243,1568,1,27000,1,65536,33,34,35,10077696,1,38,39,256000,1, %U A381885 74088,1,3872,6075,46,1,169869312,49,12500,51,5408,1,1417176,55,702464,57 %N A381885 a(n) = Product_{k=2..n-1} k^ord(n, k) where ord(n, k) = 0 if k does not divide n, otherwise is the exponent of the highest power of k that divides n. %H A381885 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_valuation">p-adic valuation</a>. %F A381885 If the base of the factors of the product is restricted to prime numbers then A005451 is generated. %F A381885 a(p) = 1 if p is prime. %F A381885 a(n) = A364813(n) / n. %p A381885 with(padic): a := n -> local k; mul(k^ordp(n, k), k = 2.. n-1): seq(a(n), n = 1..57); %t A381885 Table[Product[k^IntegerExponent[n, k], {k, 2, n - 1}], {n, 1, 57}] %o A381885 (PARI) a(n) = prod(k=2, n-1, k^valuation(n, k)); \\ _Michel Marcus_, Apr 01 2025 %Y A381885 Cf. A364813, A005451. %K A381885 nonn %O A381885 1,4 %A A381885 _Peter Luschny_, Apr 01 2025