This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381886 #21 Apr 04 2025 13:56:16 %S A381886 1,0,1,0,2,1,0,3,1,1,0,4,3,1,1,0,5,3,1,1,1,0,6,4,2,1,1,1,0,7,4,2,1,1, %T A381886 1,1,0,8,7,2,2,1,1,1,1,0,9,7,4,2,1,1,1,1,1,0,10,8,4,2,2,1,1,1,1,1,0, %U A381886 11,8,4,2,2,1,1,1,1,1,1,0,12,10,5,3,2,2,1,1,1,1,1,1 %N A381886 Triangle read by rows: T(n, k) = Sum_{j=1..floor(log[k](n))} floor(n / k^j) if k >= 2, T(n, 1) = n, T(n, 0) = 0^n. %H A381886 Jeffrey C. Lagarias and Wijit Yangjit, <a href="https://arxiv.org/abs/2310.12949">The factorial function and generalizations, extended</a>, arXiv:2310.12949 [math.NT], 2023. %H A381886 A. M. Oller-Marcen and J. Maria Grau, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Oller/oller3.html">On the Base-b Expansion of the Number of Trailing Zeros of b^k!</a>, J. Int. Seq. 14 (2011) 11.6.8. %F A381886 T(n, k) = Sum_{j=1..n} valuation(j, k) for n >= 2. %e A381886 Triangle starts: %e A381886 [ 0] 1; %e A381886 [ 1] 0, 1; %e A381886 [ 2] 0, 2, 1; %e A381886 [ 3] 0, 3, 1, 1; %e A381886 [ 4] 0, 4, 3, 1, 1; %e A381886 [ 5] 0, 5, 3, 1, 1, 1; %e A381886 [ 6] 0, 6, 4, 2, 1, 1, 1; %e A381886 [ 7] 0, 7, 4, 2, 1, 1, 1, 1; %e A381886 [ 8] 0, 8, 7, 2, 2, 1, 1, 1, 1; %e A381886 [ 9] 0, 9, 7, 4, 2, 1, 1, 1, 1, 1; %e A381886 [10] 0, 10, 8, 4, 2, 2, 1, 1, 1, 1, 1; %e A381886 [11] 0, 11, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1; %e A381886 [12] 0, 12, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1; %p A381886 T := (n, b) -> local i; ifelse(b = 0, b^n, ifelse(b = 1, n, add(iquo(n, b^i), i = 1..floor(log(n, b))))): seq(seq(T(n, b), b = 0..n), n = 0..12); %p A381886 # Alternative: %p A381886 T := (n, k) -> local j; ifelse(k = 0, k^n, ifelse(k = 1, n, add(padic:-ordp(j, k), j = 1..n))): for n from 0 to 12 do seq(T(n, k), k = 0..n) od; %t A381886 T[n_, 0] := If[n == 0, 1, 0]; T[n_, 1] := n; %t A381886 T[n_, k_] := Last@Accumulate[IntegerExponent[Range[n], k]]; %t A381886 Table[T[n, k], {n, 0, 12}, {k, 0, n}] // MatrixForm %t A381886 (* Alternative: *) %t A381886 T[n_, k_] := Sum[Floor[n/k^j], {j, Floor[Log[k, n]]}]; T[n_, 1] := n; T[n_, 0] := 0^n; T[0, 0] = 1; Flatten@ Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* _Michael De Vlieger_, Apr 03 2025 *) %o A381886 (Python) %o A381886 from math import log %o A381886 def T(n: int, b: int) -> int: %o A381886 return (b**n if b == 0 else n if b == 1 else %o A381886 sum(n // (b**i) for i in range(1, 1 + int(log(n, b))))) %o A381886 print([[T(n, b) for b in range(n+1)] for n in range(12)]) %o A381886 (SageMath) %o A381886 def T(n, b): return (b^n if b == 0 else n if b == 1 else sum(valuation(j, b) for j in (1..n))) %o A381886 print(flatten([[T(n, b) for b in range(n+1)] for n in srange(13)])) %o A381886 (PARI) T(n,k) = if (n==0, 1, if (n==1, k, if (k==0, 0, if (k==1, n, sum(j=1, n, valuation(j, k)))))); %o A381886 row(n) = vector(n+1, k, T(n,k-1)); \\ _Michel Marcus_, Apr 04 2025 %Y A381886 Cf. A011371 (column 2), A054861 (column 3), A054893 (column 4), A027868 (column 5), A054895 (column 6), A054896 (column 7), A054897 (column 8), A054898 (column 9), A078651 (row sums). %Y A381886 Cf. A078632, A078567, A153216, A366471. %K A381886 nonn,tabl %O A381886 0,5 %A A381886 _Peter Luschny_, Apr 03 2025