This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381888 #20 Mar 15 2025 09:30:06 %S A381888 1,2,2,3,9,3,4,28,28,4,5,75,165,75,5,6,186,786,786,186,6,7,441,3311, %T A381888 6181,3311,441,7,8,1016,12888,40888,40888,12888,1016,8,9,2295,47529, %U A381888 241191,404361,241191,47529,2295,9,10,5110,168670,1312750,3445510,3445510,1312750,168670,5110,10 %N A381888 Triangle read by rows: T(n, k) = (n + 1) * Sum_{j=k..n} binomial(n, j) * Eulerian1(j, j - k). %C A381888 Consider A381706, the number of permutations of k chosen numbers in [n] with i-1 descents, as a sequence of squares of size 1x1, 2x2, 3x3, ..., as displayed in the example section of A381706. Conjecture: T(n, k) is the sum of column k+1 of the (n+1)th square; in other words: T(n, k) = Sum_{j=0..n} b(n+1, j+1, k+1). %F A381888 T(n, k) = n! * [y^k] [x^n] ((y - 1)*(y*exp(x*y)*(x*y + 1) - (x + 1)*exp(x*(2*y - 1)))) / (exp(x*(y - 1)) - y)^2. %F A381888 Sum_{k=0..n} (-1)^k * T(n, k) = (-1)^n * (n + 1) * Euler(n). %F A381888 T(n, k) = (n + 1) * A046802(n, k). %e A381888 Triangle starts: %e A381888 [0] 1; %e A381888 [1] 2, 2; %e A381888 [2] 3, 9, 3; %e A381888 [3] 4, 28, 28, 4; %e A381888 [4] 5, 75, 165, 75, 5; %e A381888 [5] 6, 186, 786, 786, 186, 6; %e A381888 [6] 7, 441, 3311, 6181, 3311, 441, 7; %e A381888 [7] 8, 1016, 12888, 40888, 40888, 12888, 1016, 8; %e A381888 [8] 9, 2295, 47529, 241191, 404361, 241191, 47529, 2295, 9; %p A381888 T := (n, k) -> (n + 1)*add(binomial(n, j)*combinat:-eulerian1(j, j - k), j = k .. n): %p A381888 for n from 0 to 8 do seq(T(n, k), k=0..n) od; %p A381888 # Using the e.g.f.: %p A381888 egf := ((y - 1)*(y*exp(x*y)*(x*y + 1) - (x + 1)*exp(x*(2*y - 1))))/(exp(x*(y - 1)) - y)^2: %p A381888 ser := simplify(series(egf, x, 10)): %p A381888 seq(seq(n!*coeff(coeff(ser, x, n), y, k), k = 0..n), n = 0..9); %o A381888 (SageMath) # Using function eulerian1 from A173018. %o A381888 def T(n: int, k: int) -> int: %o A381888 return (n + 1) * sum(binomial(n, j) * eulerian1(j, j-k) for j in (k..n)) %o A381888 def Trow(n) -> list[int]: return [T(n, k) for k in (0..n)] %o A381888 for n in (0..8): print(f"{n}: ", Trow(n)) %Y A381888 Cf. A046802, A173018 (Eulerian1), A122045 (Euler), A058877 (column 1), A007526 (row sums), A381706 (generalized Eulerian). %K A381888 nonn,tabl %O A381888 0,2 %A A381888 _Peter Luschny_, Mar 11 2025