This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381891 #30 Mar 26 2025 15:27:10 %S A381891 1,0,2,0,3,6,0,4,10,14,0,5,19,28,33,0,6,28,52,64,70,0,7,44,93,127,142, %T A381891 149,0,8,60,152,228,272,290,298,0,9,85,242,404,507,561,582,591,0,10, %U A381891 110,370,672,904,1034,1098,1122,1132,0,11,146,546,1100,1568,1870,2027,2101,2128,2139 %N A381891 Triangle read by rows: T(n,k) is the number of partitions of a 2-colored set of n objects into at most k parts with 0 <= k <= n. %C A381891 The 1-color case is Euler's table A026820. %H A381891 Alois P. Heinz, <a href="/A381891/b381891.txt">Rows n = 0..150, flattened</a> %F A381891 T(1,k) = k + 1. %F A381891 T(n,n) = A005380(n). %e A381891 Triangle begins: %e A381891 1; %e A381891 0, 2; %e A381891 0, 3, 6; %e A381891 0, 4, 10, 14; %e A381891 0, 5, 19, 28, 33; %e A381891 0, 6, 28, 52, 64, 70; %e A381891 0, 7, 44, 93, 127, 142, 149; %e A381891 0, 8, 60, 152, 228, 272, 290, 298; %e A381891 ... %p A381891 b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (n+1)*x^n, %p A381891 add(b(n-i*j, min(n-i*j, i-1))*binomial(i+j, j)*x^j, j=0..n/i))) %p A381891 end: %p A381891 T:= proc(n, k) option remember; %p A381891 `if`(k<0, 0, T(n, k-1)+coeff(b(n$2), x, k)) %p A381891 end: %p A381891 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Mar 09 2025 %o A381891 (Python) %o A381891 from sympy import binomial %o A381891 from sympy.utilities.iterables import partitions %o A381891 from sympy.combinatorics.partitions import IntegerPartition %o A381891 def a381891_row( n): %o A381891 if n == 0 : return [1] %o A381891 t = list( [0] * n) %o A381891 for p in partitions( n): %o A381891 p = IntegerPartition( p).as_dict() %o A381891 fact = 1 %o A381891 s = 0 %o A381891 for k in p : %o A381891 s += p[k] %o A381891 fact *= binomial( k + p[k], p[k]) %o A381891 if s > 0 : %o A381891 t[s - 1] += fact %o A381891 for i in range( n - 1): %o A381891 t[i+1] += t[i] %o A381891 return [0] + t %Y A381891 Cf. A005380, A026820. %K A381891 nonn,tabl %O A381891 0,3 %A A381891 _Peter Dolland_, Mar 09 2025