This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381895 #29 Mar 20 2025 06:01:39 %S A381895 1,0,2,0,2,5,0,2,6,10,0,2,9,15,20,0,2,10,22,30,36,0,2,13,31,48,58,65, %T A381895 0,2,14,40,68,90,102,110,0,2,17,51,97,135,162,176,185,0,2,18,64,128, %U A381895 194,242,274,290,300,0,2,21,77,171,271,357,415,452,470,481 %N A381895 Triangle read by rows: T(n, k) is the number of partitions of n with at most k parts where 0 <= k <= n, and each part is one of two kinds. %C A381895 The 1-kind case is Euler's table A026820. %H A381895 Alois P. Heinz, <a href="/A381895/b381895.txt">Rows n = 0..150, flattened</a> %F A381895 G.f.: A(x,y,2) where A(x,y,p) = 1/(1-y) * Product_{i>0} 1/(1-y*x^i)^p is the g.f for the number of partitions of n with at most k parts and p kinds of each part. - _John Tyler Rascoe_, Mar 19 2025 %e A381895 Triangle starts: %e A381895 0 : [1] %e A381895 1 : [0, 2] %e A381895 2 : [0, 2, 5] %e A381895 3 : [0, 2, 6, 10] %e A381895 4 : [0, 2, 9, 15, 20] %e A381895 5 : [0, 2, 10, 22, 30, 36] %e A381895 6 : [0, 2, 13, 31, 48, 58, 65] %e A381895 7 : [0, 2, 14, 40, 68, 90, 102, 110] %e A381895 8 : [0, 2, 17, 51, 97, 135, 162, 176, 185] %e A381895 9 : [0, 2, 18, 64, 128, 194, 242, 274, 290, 300] %e A381895 10 : [0, 2, 21, 77, 171, 271, 357, 415, 452, 470, 481] %e A381895 ... %o A381895 (Python) %o A381895 from sympy.utilities.iterables import partitions %o A381895 from sympy.combinatorics.partitions import IntegerPartition %o A381895 def a381895_row( n): %o A381895 if n == 0 : return [1] %o A381895 t = list( [0] * n) %o A381895 for p in partitions( n): %o A381895 p = IntegerPartition( p).as_dict() %o A381895 fact = 1 %o A381895 s = 0 %o A381895 for k in p : %o A381895 s += p[k] %o A381895 fact *= 1 + p[k] %o A381895 if s > 0 : %o A381895 t[s - 1] += fact %o A381895 for i in range( n - 1): %o A381895 t[i+1] += t[i] %o A381895 return [0] + t %o A381895 (PARI) %o A381895 A381895(row_max) = {my(N=row_max+1,x='x+O('x^N), y='y+O('y^N), h=prod(i=1,N, 1/(1-y*x^i)^2)/(1-y)); for(n=0,N-1, if(n<1, print([1]),print(concat([0],Vec(polcoeff(h, n))[1..n]))))} %o A381895 A381895(12) \\ _John Tyler Rascoe_, Mar 19 2025 %Y A381895 Main diagonal gives A000712. %Y A381895 Cf. A026820. %K A381895 nonn,tabl %O A381895 0,3 %A A381895 _Peter Dolland_, Mar 09 2025