cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381946 a(n) is the smallest positive integer k with at least one digit > 1 such that k*n contains all the distinct digits of n.

This page as a plain text file.
%I A381946 #17 Mar 21 2025 18:31:35
%S A381946 12,6,12,6,3,6,21,6,21,12,12,16,24,51,7,26,42,6,48,6,6,6,14,18,5,24,
%T A381946 26,26,32,12,23,26,4,41,9,26,19,22,24,6,4,7,8,6,9,14,31,8,6,3,3,26,25,
%U A381946 27,3,26,65,26,5,6,24,23,22,26,21,4,25,12,14,21,17,24,19,47,5,22,14,24,25
%N A381946 a(n) is the smallest positive integer k with at least one digit > 1 such that k*n contains all the distinct digits of n.
%C A381946 We require that k has a digit > 1 in order to exclude "trivial" solutions like k = 1 or k = 10 or (if those are forbidden) k = 10^m + 1 where m is about half the length of n, e.g., k = 11 for most 2-digit numbers ab => 11*ab = a(a+b)b.
%F A381946 a(n) = A381700(n)/n.
%e A381946 26 is the smallest positive integer with digits greater than 1, and when multiplied by 16, it produces 416. The resulting product, 416, contains the digits 1 and 6, which are the distinct digits of 16. Therefore, a(16) = 26.
%o A381946 (PARI) apply( {A381946(n)=my(S=Set(digits(n))); for(k=2, oo, #setminus(S, Set(digits(k*n))) || vecmax(digits(k))<2 || return(k))}, [1..99])
%o A381946 (PARI) a(n) = my(d=digits(n), s=Set(d), k=2); while (!((#select(x->(x>1), digits(k)) >= 1) && (setintersect(Set(digits(k*n)), s) == s)), k++); k; \\ _Michel Marcus_, Mar 11 2025
%Y A381946 Cf. A381700.
%K A381946 nonn,base
%O A381946 1,1
%A A381946 _M. F. Hasler_ and _Ali Sada_, Mar 10 2025
%E A381946 More terms from _Michel Marcus_, Mar 11 2025