cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381958 Numerator of the sum of the reciprocals of the indices of distinct prime factors of n.

This page as a plain text file.
%I A381958 #12 Mar 19 2025 15:30:15
%S A381958 0,1,1,1,1,3,1,1,1,4,1,3,1,5,5,1,1,3,1,4,3,6,1,3,1,7,1,5,1,11,1,1,7,8,
%T A381958 7,3,1,9,2,4,1,7,1,6,5,10,1,3,1,4,9,7,1,3,8,5,5,11,1,11,1,12,3,1,1,17,
%U A381958 1,8,11,19,1,3,1,13,5,9,9,5,1,4,1,14,1,7,10,15,3,6,1,11,5,10,13,16,11
%N A381958 Numerator of the sum of the reciprocals of the indices of distinct prime factors of n.
%H A381958 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A381958 If n = Product (p_j^k_j) then a(n) = numerator of Sum (1/pi(p_j)).
%F A381958 G.f. for fractions: Sum_{k>=1} x^prime(k) / (k*(1 - x^prime(k))).
%e A381958 0, 1, 1/2, 1, 1/3, 3/2, 1/4, 1, 1/2, 4/3, 1/5, 3/2, 1/6, 5/4, 5/6, 1, 1/7, 3/2, 1/8, 4/3, ...
%t A381958 Join[{0}, Table[Plus @@ (1/PrimePi[#[[1]]] & /@ FactorInteger[n]), {n, 2, 95}] // Numerator]
%t A381958 nmax = 95; CoefficientList[Series[Sum[x^Prime[k]/(k (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
%o A381958 (PARI) a(n) = my(f=factor(n)); numerator(sum(k=1, #f~, 1/primepi(f[k,1]))); \\ _Michel Marcus_, Mar 11 2025
%Y A381958 Cf. A000720, A028235, A028236, A066328, A083345, A318573, A379141, A381959 (denominators).
%K A381958 nonn,frac
%O A381958 1,6
%A A381958 _Ilya Gutkovskiy_, Mar 11 2025