This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381967 #10 Mar 14 2025 09:01:13 %S A381967 0,1,2,4,3,10,6,7,9,8,5,12,11,18,14,16,15,22,13,19,23,24,17,20,21,26, %T A381967 25,40,39,42,32,54,30,36,48,62,33,61,51,28,27,53,29,67,49,64,47,46,34, %U A381967 44,58,38,55,41,31,52,57,56,50,59,60,37,35,66,45,68,63,43 %N A381967 Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, the factorial base expansion of n*a(n) only contains distinct nonzero digits. %C A381967 This sequence is a self-inverse permutation of the nonnegative integers. %C A381967 This sequence is well defined: for any n > 0 and k > n, the factorial base expansion of k!, a multiple of n, contains distinct nonzero digits (in fact: a single 1 digit). %H A381967 Rémy Sigrist, <a href="/A381967/b381967.txt">Table of n, a(n) for n = 0..10000</a> %H A381967 Rémy Sigrist, <a href="/A381967/a381967.png">Scatterplot of the first 50000 terms</a> %H A381967 Rémy Sigrist, <a href="/A381967/a381967.gp.txt">PARI program</a> %H A381967 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a> %H A381967 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A381967 The first terms, alongside the factorial base expansion of n*a(n), are: %e A381967 n a(n) fact(n*a(n)) %e A381967 -- ---- ------------ %e A381967 0 0 0 %e A381967 1 1 1 %e A381967 2 2 2,0 %e A381967 3 4 2,0,0 %e A381967 4 3 2,0,0 %e A381967 5 10 2,0,1,0 %e A381967 6 6 1,2,0,0 %e A381967 7 7 2,0,0,1 %e A381967 8 9 3,0,0,0 %e A381967 9 8 3,0,0,0 %e A381967 10 5 2,0,1,0 %e A381967 11 12 1,0,2,0,0 %e A381967 12 11 1,0,2,0,0 %e A381967 13 18 1,4,3,0,0 %e A381967 14 14 1,3,0,2,0 %e A381967 15 16 2,0,0,0,0 %e A381967 16 15 2,0,0,0,0 %o A381967 (PARI) \\ See Links section. %Y A381967 Cf. A265349. %K A381967 nonn,base %O A381967 0,3 %A A381967 _Rémy Sigrist_, Mar 12 2025