A381974 Primes of the form Sum_{k >= 0} floor(m/3^k) for some number m.
2, 5, 13, 17, 19, 23, 31, 41, 53, 59, 61, 67, 71, 89, 97, 101, 103, 107, 127, 131, 139, 149, 151, 157, 163, 167, 179, 191, 193, 197, 211, 223, 227, 229, 233, 251, 257, 263, 269, 277, 283, 313, 317, 331, 337, 349, 353, 373, 379, 383, 409, 419, 421, 431, 439
Offset: 1
Keywords
Examples
[9/1] + [9/3] + [9/9] = 13, where [ ] = floor, so 13 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k; add(floor(n/3^k),k=0..ilog[3](n)) end proc: select(isprime, map(f, [$2..100])); # Robert Israel, Apr 21 2025
-
Mathematica
f[n_] := Sum[Floor[n/3^k], {k, 0, Floor[Log[3, n]]}] (* A004128 *) u = Select[Range[400], PrimeQ[f[#]] &] (* A381973 *) Map[f, u] (* A381974 *)